簡易檢索 / 詳目顯示

研究生: 簡郡邑
JYUN-YI JIAN
論文名稱: 以常壓電漿輔助化學氣相沉積氧化矽薄膜於AZ31鎂合金上之抗腐蝕特性研究
Deposition of Silicon Oxide Films by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition for Anti-corrosion of Magnesium Alloys
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 周振嘉
Chen-Chia Chou
黃駿
Chun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 鎂合金常壓電漿輔助化學氣相沉積氧化矽抗腐蝕
外文關鍵詞: Magnesium alloys, Atmospheric pressure plasma enhanced chemical va, Silicon dioxide, Corrosion resistance
相關次數: 點閱:338下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鎂及其合金在實用金屬中已廣泛被使用在航空、汽車及3C產品上,由於其優點:比剛性高、制震能良好,加工性優良、電磁波遮蔽性佳及導熱性高。是對於運輸交通工具、隨身攜帶式資訊產品等3C產品更加輕量化的關鍵材料。然而鎂合金在大氣環境中為化學活性高之金屬,抗腐蝕性較差。為提升其實用性,各界於其表面抗腐蝕處理的研究在鎂金屬表面上沉積金屬、陶瓷與複合式薄膜來提升抗腐蝕能力。本研究使用常壓電漿輔助化學氣相沉積(APPECVD)氧化矽薄膜來提升其抗腐蝕能力,藉由改變載氣氣體流量並加以後續熱處理來探討流量變化及熱處理前後對於薄膜形貌、組成及性質之影響。
材料分析方面利用水滴接觸角量測儀(Contact Angle Goniometer)觀察其親疏水性及表面能,表面形態則以場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM)與原子力顯微鏡鏡(Atomic Force Microscope, AFM)進行觀察,並以傅立葉紅外線光譜分析儀(Fourier Transform InfraRed Spectroscopy)及化學分析電子能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)鑑定表面官能基與化學鍵結之組成,以場發射雙束型聚焦離子束顯微鏡(Dual Beam Focused Ion Beam, FIB)切試片剖面觀察其沉積之薄膜厚度,最後,將所有試片置於3.5 wt% NaCl水溶液中,利用電化學方法探討各種不同載氣流率所生成的二氧化矽薄膜及熱處理前後之電化學腐蝕行為。
實驗結果顯示,氧化矽薄膜的表面自由能較原始AZ31較小,從60 mN/m下降至45 mN/m,可以得到較疏水的效果。並且由AFM及SEM觀察得知,氧化矽薄膜的均勻性及平坦性相當良好,總體粗糙度平均約3~5 nm,隨著載氣氣流量改變,其形貌不是呈一線性規則變化,且在900 sccm的製程可以發現特殊的有序排列現象,視為一轉折點。藉由化學分析電子能譜全譜圖可以發現氧化矽薄膜組成為Si、C、O三種元素,並無其他元素產生,且O/Si 比例接近2。經由剖面圖可以觀察到氧化矽薄膜厚度約為90 nm,其沉積速率約為210 nm/min,在電化學極化曲線可以發現,本實驗製備的氧化矽薄膜於AZ31鎂合金上有優異的抗腐蝕效果,腐蝕電流密度(icorr)由2.40×10-1 /mA cm-2下降3~5個級數。最後,試片經過熱處理300°C /2hr後,其表面更為緻密,然而卻產生微小之間隙、孔洞,代表其薄膜有組成上的改變,藉由傅立葉紅外線光譜儀證實表面上之hydroxyl group或CHx group被移除,其腐蝕電流密度(icorr)更下降至9.00×10-6 mA cm-2,然而其孔蝕因子也造成氧化矽薄膜抵抗腐蝕效果受到影響。


Magnesium alloys have been widely used in the aircraft and automobile industries because of many advantages of low density, high strength/weight ratio, excellent machinability and recyclability. Unfortunately, it has a major drawback due to the poor corrosion resistance that restricts their engineering applications. In general, traditional surface treatments by wet processes (electrochemical plating, anodizing, and micro-arc oxidation) and dry processes (thermal spraying, chemical vapor deposition, and physical vapor deposition) are necessarily required to improve the corrosion resistance of magnesium alloys. However, these processes are not environmentally benign or needed to be equipped with the vacuum systems.
This study is to evaluate the feasibility and application of silicon oxide (SiOx) thin films as anti-corrosion layers for AZ31 magnesium alloys by atmospheric pressure plasma enhanced chemical vapor deposition (APPECVD). The effects of carrier gas flow rates was investigated for the SiOx film deposition. The surface morphologies of deposited SiOx film were examined by Contact Angle Goniometer, Atomic Force Microscope (AFM) and Field Emission Scanning Electron Microscope (FE-SEM). The chemical compositions were analyzed by Fourier Transform InfraRed Spectroscopy (FTIR) and Electron Spectroscopy for Chemical Analysis (ESCA). The corrosion resistance of Mg alloy and SiOx film was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solutions.
The results show that surface free energy of the deposited SiOx was lower than Mg alloy, which resulted in a more hydrophobic surface to avoid getting wet and being corroded. The surface morphology of SiOx films were uniformly smooth with a root mean square about 3~5 nm. The surface morphologies of SiOx films from SEM observation randomly altered with increasing the O2 carrier gas flow rates. According to the results of FTIR and ESCA, the chemical compositions of SiOx films were composed of silicon, oxygen, and carbon, and O/Si ratio were close to 2. It can be found that the thickness of SiOx films were about 90 nm and the deposition rate were 210 nm/min. After corrosion test by the potentiodynamic polarization measurements in 3.5 wt% NaCl solutions, the anticorrosion behavior of SiOx film on AZ31 deposited at tge carrier gas flow rate of 1500 scccm was evidently proved with a higher corrosion potential (Ecorr = -1392 mV) and a lower corrosion current (Icorr.= 5.30×10-4 mA cm-2) as compared to raw AZ31 materials (Ecorr = -1463 mV;Icorr .= 2.40×10-1). For thermally treated at 300°C for 2hr, the tiny pits and nanopores were observed at the surface of fillms due to the removal of hydroxyl group and CHx group analyzed by FT-TR, which altered the corrosion behavior of SiOx film on AZ31.

中文摘要 I Abstract III 目錄 V 圖索引 VIII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 常壓電漿技術 2 1.3 二氧化矽 3 1.4 研究動機與目的 3 第二章 文獻回顧 5 2.1 鎂合金簡介 5 2.1.1 鎂合金的應用 5 2.1.2 鎂合金之特性 6 2.1.3 鎂合金的表示方式 9 2.1.4 各元素對鎂合金性質的影響 9 2.2 鎂的腐蝕電化學 13 2.2.1 腐蝕的定義 13 2.2.2 鎂合金的腐蝕 17 2.2.3 鈍化之定義與特性 19 2.2.4 腐蝕之電化學反應 21 2.3 鎂合金表面抗腐蝕處理技術 23 2.4 電漿概述 27 2.4.1 電漿定義 27 2.4.2 電漿基本原理 28 2.4.3 電漿基本反應 32 2.5 常壓電漿簡介 33 2.5.1 常壓電漿基本特性 33 2.5.2 常壓電漿鍍膜相關研究 37 第三章 實驗方法與分析 39 3.1 實驗目的 39 3.2 實驗藥品與耗材 41 3.3 實驗步驟 43 3.3.1 基材準備 43 3.3.2 實驗系統 43 3.3.3 實驗分析及儀器原理 46 第四章 結果與討論 58 4.1 常壓電漿沉積氧化矽薄膜於鎂合金之表面分析 58 4.1.1 水滴接觸角及表面自由能計算 60 4.2 鍍膜表面型態分析 64 4.2.1 AFM 表面形貌及粗糙度分析 64 4.2.2 SEM 表面形貌觀察 70 4.3 鍍膜表面元素分析 79 4.3.1 FT-IR 傅立葉紅外線光譜分析 79 4.4 薄膜厚度及鍍膜機制 85 4.4.1 FIB之試片橫截面 85 4.4.2 鍍膜機制 88 4.5動電位極化曲線測試 90 第五章 結論及未來展望 93 第六章 參考文獻 96

[1] 陳樹友, "鎂合金於AlCl3-EMIC離子液體中鍍鋁層之耐蝕性研究," 成功大學材料科學及工程學系碩士論文, 2007.
[2] 陳俊欽, "鋁鋅複合噴覆塗層對AZ31 鎂合金表面性質之影響," 大同大學材料工程研究所碩士論文, 2003.
[3] H. Inoue, K. Sugahara, A. Yamamoto, and H. Tsubakino, "Corrosion rate of magnesium and its alloys in buffered chloride solutions," Corrosion Science, vol. 44, pp. 603-610, 2002.
[4] C. R. S. Mathieu, J. Hazan, and P. Steinmetz, "Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys," Corrosion Science, vol. 44, pp. 2737-2756, 2002.
[5] C. D. Yim and K. S. Shin, "Semi-solid processing of Magnesium alloys," Materials transactions, vol. 44, pp. 558-561, 2003.
[6] A. L. Rudd, C. B. Breslin, and F. Mansfeld, "The corrosion protection a€orded by rare earth conversion coatings applied to magnesium," Corrosion Science vol. 42, pp. 275-288, 2000.
[7] C. Blawert, W. Dietzel, E. Ghali, and G. Song, "Anodizing treatments for Magnesium alloys and their effect on corrosion resistance in various environments," Advanced Engineering Materials, vol. 8, pp. 511-533, 2006.
[8] Y. I. Choi, S. Salman, K. Kuroda, and M. Okido, "Synergistic corrosion protection for AZ31 Mg alloy by anodizing and stannate post-sealing treatments," Electrochimica Acta, vol. 97, pp. 313-319, 2013.
[9] F. Chen, H. Zhou, B. Yao, Z. Qin, and Q. Zhang, "Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces," Surface and Coatings Technology, vol. 201, pp. 4905-4908, 2007.
[10] Y. K. Pan, C. Z. Chen, D. G. Wang, X. Yu, and Z. Q. Lin, "Influence of additives on microstructure and property of microarc oxidized Mg–Si–O coatings," Ceramics International, vol. 38, pp. 5527-5533, 2012.
[11] L. Bardos and H. Barankova, "Cold atmospheric plasma: Sources, processes, and applications," Thin Solid Films, vol. 518, pp. 6705-6713, 2010.
[12] S. H. Yang, C. H. Liu, C. H. Su, and H. Chen, "Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application," Thin Solid Films, vol. 517, pp. 5284-5287, 2009.
[13] 莊東漢, "材料破損分析," 五南圖書出版公司, 2007.
[14] H.Proffit, "Magnesium and Magnesium Alloys," AMS Hanbook, vol. 2.
[15] 陳學翰 and 王建義, "Be、Sc 微量添加對LAZ1110 機械性質之影響," 鎂合金產業通訊, vol. 40 期, pp. 34-42, 民國97.
[16] N. S. McIntyre and C. Chen, "Role of impurities on Mg surface under ambientexposure conditions," Corrosion science, vol. 40, p. 1697, 1998.
[17] 柯賢文, "腐蝕及其防制," 全華科技圖書股份有限公司, 1994.
[18] S. O. J. H. Nordlien, N . Masuko and K. Nisancioglu, "A TEM investigation of naturally formed oxide films on pure magnesium," Corrosion Science, vol. Vol. 39, pp. 1397-1414, 1997.
[19] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solution," NACE,Houston, TX, USA, 1974.
[20] 田福助 and 吳溪煌, "電化學-理論與應用," 高立圖書有限公司, 1988.
[21] H. Huo, Y. Li, and F. Wang, "Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless niclel layer," Corrosion Science, vol. 46, pp. 1467-1477, 2004.
[22] Z. Liu and W. Gao, "The effect of substrate on the electroless nickel plating of Mg and Mg alloys," Surface and coatings technology, vol. 200, pp. 3553-3560, 2006.
[23] A. K. Sharma, M. R. Suresh, H. Bhojraj, H. Narayanamurthy, and R. P. Sahu, "Electroless nickel plating on magnesium alloy," Metal finishing, vol. 3, pp. 10-16, 1998.
[24] C. K. Mittal, "Chemical Conversion and Anodized Coatings," Transactions of the Metal Finishers Association of India, vol. 4, pp. 277-231, 1995.
[25] H. Umehara, S. Terauchi, and M. Takaya, "Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys," Materials Science Forum, vol. 350-351, pp. 273-282, 2000.
[26] A. U. Simaranov, S. L. Marshakov, and Y. N. Mikhailovskii, "The composition and protective properties of chromate conversion coatings on magnesium," Protection of Metals, vol. 25, pp. 576-580, 1992.
[27] I. Azkarate, A. P. Cano, Del Barrio, M. Insausti, and P. S. Coloma, "Alternatives to Cr(VI) conversion coatings for magnesium alloys," International Congress Magnesium Alloys and their Applications, pp. 475-483, 2000.
[28] M.A. Gonzalez-Nunez, C. A. Nunez-Lopez., P. Skeldon, G.E. Thompson, H. Karimzadeh, P. Lyon, et al., "A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites," Corrosion Science, vol. 37, pp. 1763-1772, 1995.
[29] A.L. Rudd, C. B. Breslin, and F. Mansfeld, "The corrosion protection afforded by rare earth conversion coatings applied to magnesium," Corrosion Science, vol. 42, pp. 275-288, 2000.
[30] K. Huber, "Anodic formation of coatings on magnesium, Zinc and cadmium," Journal of the electrochemical society, vol. 10, pp. 376-382, 1953.
[31] O. Khaselev and J. Yahalom, "The anodic behavior of binary Mg-Al alloys in KOH-Aluminate solution," Corrosion science, vol. 40, pp. 1149-1160, 1998.
[32] M. Takaya, "Anodizing of magnesium alloys in KOH-Al(OH)3 solutions," Aluminum, vol. 65, pp. 1244-148, 1989.
[33] S. J. Kim, R. Ichino, and M. Okido, "Characterization of anodic films formed on Mg-Al alloys in alkaline bath," Materials science forum, vol. 3427, pp. 426-432, 2003.
[34] A. L. Yerokhin, L.O.Snizhko, N.L.Gurevina, A.Leyland, A.Pilkington, and A.Matthews, "Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminum alloy," Surface and Coatings Technology, vol. 177-178, pp. 779-783, 2004.
[35] Y. Ma, X. Nie, D. O. Northwood, and H. Hu, "Corrosion and erosion properties of silicate and phosphate coatings on magnesium," Thin Solid Films, vol. 469–470, pp. 472–477, 2004.
[36] 陳仲宜, "淺談微弧氧化技術在輕金屬表面處理之應用," 2007.
[37] R. H. Unger, "Thermal spray coating, in ASM handbook," corrosion, p. 459, 1987.
[38] Ch. Voulgaris, E. Amanatides, D. Mataras, S. Grassini, E. Angelini, and F. Rosalbino, "RF power and SiOxCyHz deposition efficiency in TEOS/O2 discharges for the corrosion protection of magnesium alloys," Surface and Coatings Technology, vol. 200, pp. 6618-6622, 2006.
[39] H. Hoche, J. Schmidt, S. Gros, T. Trosmann, and C. Berger, "PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys," Surface and Coatings Technology, vol. 205, pp. S145-S150, 2011.
[40] Y. T, "Method for plating magnesium alloy," 2007.
[41] H. O. Pierson, "Handbook of Refractory Carbides and Nitrides," Noyes publications, New Jersey, pp. 100-115, 1996.
[42] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, et al., "Large scale atmospheric pressure chemical vapor deposition of graphene," Carbon, vol. 54, pp. 58-67, 2013.
[43] C. Sella, J. Leceur, Y. Sampeur, and P. Catania, "Layers of high speed steel with microstructures characteristics of heat-treated materials," Surface and Coatings Technology, pp. 287-289, 1993.
[44] A. Grill, "Cold plasma in materials fabrication-from fundamentals to application," IEEE Press, NY, 1994.
[45] 陳克紹 and 曹永偉, "薄膜技術," 金文書局, 台北, 1986.
[46] B. Chapman, "Glow Discharge: Sputtering and Plasma Etching," Wiley-Interscience, New York, 1980.
[47] J. R. Roth, "Industrial Plasma Engineering," Principles, of Physics Publishing, London, vol. 1, 1995.
[48] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, "Stable glow plasma at atmospheric pressure," Journal of Physics D: Applied Physics, vol. 21, pp. 836-840, 1988.
[49] T. Yokoyama, M Kogoma, T Moriwaki, S. Okazaki, and T. Yokoyama, "The mechanism of the stabilisation of glow plasma at atmospheric pressure," Journal of Physics D: Applied Physics, vol. 23, pp. 1125-1128, 1990.
[50] J. Y. Jeong, S. E. Babayan, J. P. V. J. Tu, R. F. Hicks, and G. S. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, pp. 282–285, 1998.
[51] S. E. Babayan, J. Y. Jeong, V. J. Tu, A. Schutze, M. Moravej, G. S. Selwyn, et al., "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," PLASMA SOURCES SCIENCE AND TECHNOLOGY, vol. 10, pp. 573–578, 2001.
[52] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, and R. F. Hicks, "Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source," Journal of Applied Physics, vol. 89, p. 20, 2001.
[53] W. C. S.Y. Moon, "Driving frequency effects on the characteristics of atmospheric pressure capacitive helium discharge," Applied physics letters, vol. 93, 2008.
[54] M. Goldman and N. Goldman, "Corona discharges," Gaseous Electronics,Eds. New York: Academic vol. 1, pp. 219-290, 1978.
[55] U. Kogelschatz, "Filamentary, Patterned, and Diffuse Barrier Discharges," IEEE Transactions on Plasma Science, vol. 30, pp. 1400-1408, 2002.
[56] J. R. Roth, "Industrial Plasma Engineering Philadelphia," Taylor & Francis Group 1, 1995.
[57] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, pp. 1946-1954, 2002.
[58] N. Jidenko, C. Jimenez, F. Massines, and J. P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," Journal of Physics D: Applied Physics, vol. 40, pp. 4155-4163, 2007.
[59] R. Morent, N. D. Geyter, S. V. Vlierberghe , P. Dubruel, C. Leys, and E. Schacht, "Organic–inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure," Surface and Coatings Technology, vol. 203, pp. 1366–1372, 2009.
[60] L. Cao, T. P. Price, M. Weiss, and D. Gao, "Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films," Langmuir, vol. 24, pp. 1640-1643, 2008.
[61] W. A. Zisman, "Relation of the equilibrium contact angle to liquid and solid constitution," vol. 43, pp. 1-51, 1964.
[62] D.Y. Kwok and A. W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in Colloid and Interface Science, vol. 81, pp. 167-249, 1999.
[63] S. Siboni, C. Della Volpe, D. Maniglio, and M. Brugnara, "The solid surface free energy calculation; II. The limits of the Zisman and of the "equation-of-state" approaches," J Colloid Interface Sci, vol. 271, pp. 454-72, Mar 15 2004.
[64] P. Zdenka, S. K. Karin, S. S. Majda, and K. Tatjana, "Determining the surface free energy of cellulose materials with the powder contact angle method," Textile Research Journal, vol. 74, pp. 55-62, 2004.
[65] "http://sindatek.com/Bmyl.htm."
[66] F. Grzegorzewski, S. Rohn, A. Quade, K. Schroder, J. Ehlbeck, O. Schluter, et al., "Reaction chemistry of 1,4-Benzopyrone derivates in non-equilibrium Low-temperature plasmas," Plasma Processes and Polymers, vol. 7, pp. 466-473, 2010.
[67] A. Kuwabara, S.-I. Kuroda, and H. Kubota, "Preparation of a CVD thin film by an Preparation of a CVD thin film by an surface discharge plasma torch," Plasma Sources Science and Technology, vol. 15, pp. 328-331, 2006.
[68] W. Barthlott and C. Neinhuis, "Purity of the sacred lotus,or escape from contamination in biological surfaces," Planta, vol. 202, 1997.
[69] C. H. Pan, "Deposition of hydrophobic thin film by low-pressure CH2F2 plasma process," Department of Chemical Engineering & Materials Science, Yuan-Ze University., 2010.
[70] C. Huang , C. H. Liu , C.H. Su, W. T. Hsu , and S. Y. Wu, "Investigation of atmospheric-pressure plasma deposited SiOx filmson polymeric substrates," Thin Solid Films, vol. 517, pp. 5141-5145, 2009.
[71] V. Raballand, J. Benedikt, and A. v. Keudell, "Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet," Applied Physics Letters, vol. 92, p. 091502, 2008.
[72] Y. Ding, Q. Pan, J. Jin, H. Jia, and H. Shirai, "Silicon oxide synthesized using an atmospheric pressure microplasma jet from a tetraethoxysilane and oxygen mixture," Thin Solid Films, vol. 518, pp. 3487-3491, 2010.
[73] X. Y. Xu, L. Li, S. G. Wang, L. L. Zhao, and T. C. Ye, "Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure," Plasma Sources Science and Technology, vol. 16, pp. 372-376, 2007.
[74] G. Socrates, "Infrared characteristic group frequencies — tables and charts," John Wiley and Sons Ltd., pp. 241-246, 2001

無法下載圖示 全文公開日期 2018/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE