簡易檢索 / 詳目顯示

研究生: 許文誠
Wen-cheng Hsu
論文名稱: 四閥單缸機車引擎缸內流場的PIV量測與計算分析
PIV Diagnostics and Computational Analysis of In-cylinder Flows of a Four-valve, Single-cylinder Motorcycle Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 趙振綱
Ching-Kong Chao
陳明志
Ming-Jyh Chern
孫珍理
Chen-Li Sun
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 199
中文關鍵詞: 四閥機車引擎流場
外文關鍵詞: PIV, motorcycle engine, four-valve, in-cylinder flows
相關次數: 點閱:207下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用實驗與計算方法,針對一部四閥單缸四行程250 c.c.引擎,在進氣和壓縮行程期間,探討及分析缸內氣流繞著缸徑軸上的滾轉(tumble)運動。實驗是使用質點影像速度儀(particle image velocimeter, PIV)做缸內流場滾動量之檢測,為了有適合的實驗設備必須將原有之引擎加以改裝,包含進氣道、壓克力汽缸、活塞延伸段等;計算模擬方法是使用商業套裝計算流體動力學(computational fluid dynamics, CFD)軟體STAR-CD做缸內流場滾動量之檢測,並藉由循環渦度滾轉比及循環絕對紊流強度等量化指標,定量分析流場結構與引擎性能間的相關性。實驗與計算結果顯示,在汽缸中心對稱面上的循環渦度滾轉比( )分別為0.053與0.081,然而根據先前研究結果發現,氣流的循環渦度滾轉比必須在0.4以上,缸內滾轉運動對引擎性能的增加才能彰顯出來,而所得到的實驗與計算模擬整體趨勢相當相近,因此可以藉由計算模擬方法為輔助來幫助研發人員於引擎開發過程。


The axial flow inside the cylinder during intake and compression strokes of a four-stroke motorcycle engine has been studied through experiments and computer simulations. Velocity measurements were done using particle image velocimeter (PIV) while the computer simulation was carried out using STAR-CD software. Engine components were modified and acrylic materials were used to ensure high quality PIV measurements. The inception, establishment, evolution, and destruction processes of the tumbling vortical structures during the intake and compression strokes are presented and discussed. The strengths of the rotating motions in the axial planes are quantified by dimensionless tumble ratio. Experiments and computations tumble ratios are respectively 0.053 and 0.081, which indicates insufficient engine power. Results gathered from computer simulation quantitatively agree with the experimental results.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 表圖索引 xi 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的與方法 8 第二章 實驗設備、儀器與方法 10 2.1 實驗構想與方法 10 2.1.1 引擎改裝 10 2.1.2 引擎潤滑油路系統改裝 11 2.1.3 取像相位與座標定義 12 2.1.4 實驗引擎動力來源 13 2.1.5 質點的選用 13 2.2 實驗設備 14 2.2.1 引擎型式與規格 14 2.2.2 傳動系統 15 2.2.3 引擎測試平台 15 2.2.4 編碼器 16 2.2.5 質點植入系統 16 2.3 實驗儀器 17 2.3.1 質點影像速度儀 17 2.4 物理參數定義 19 2.4.1 樣本平均 19 2.4.2 紊流強度 20 2.4.3 面平均紊流強度 21 2.4.4 循環紊流強度 21 2.4.5 滾轉比 22 第三章 計算模擬之模型與方法 24 3.1 計算流力軟體的簡介 24 3.2 統御方程式 26 3.2.1 紊流模式 27 3.3 數值方法 30 3.3.1 離散化方程式 30 3.3.2 PISO解法理論 32 3.3.3 收斂標準 37 3.4 數值模擬 38 3.4.1 計算網格 38 3.4.2 邊界條件與初始條件 39 3.4.3 取像相位與座標定義 40 3.5 物理參數定義 40 3.5.1 滾轉比 40 第四章 缸內氣流滾轉運動實驗量測結果與討論 42 4.1 對稱面循環變異與樣本次數之分析 42 4.1.1 缸內流場結構與樣本平均次數之分析 42 4.1.2 缸內任一固定點的速度與樣本平均次數之分析43 4.1.3 速度分量沿座標軸變化與樣本平均次數之分析43 4.2 對稱面缸內氣流滾轉運動 44 4.2.1 流場結構與衍化過程 44 4.2.2 絕對紊流強度分佈與衍化過程 47 4.2.3 相對紊流強度分佈與衍化過程 49 4.3 對稱面量化分析 52 4.3.1 循環平均滾轉比 52 4.3.2 循環平均紊流強度 53 4.4 非對稱面循環變異與樣本次數之分析 53 4.4.1 缸內流場結構與樣本平均次數之分析 53 4.4.2 缸內任一固定點的速度與樣本平均次數之分析54 4.4.3 速度分量沿座標軸變化與樣本平均次數之分析54 4.5 非對稱面缸內氣流滾轉運動 55 4.5.1 流場結構與衍化過程 55 4.5.2 絕對紊流強度分佈與衍化過程 59 4.5.3 相對紊流強度分佈與衍化過程 61 4.6 非對稱面量化分析 64 4.6.1 循環平均滾轉比 64 4.6.2 循環平均紊流強度 64 第五章 缸內氣流滾轉運動計算結果與討論 65 5.1 對稱面缸內氣流滾轉運動 65 5.1.1 流場結構與衍化過程 65 5.2 對稱面量化分析 70 5.2.1 循環平均滾轉比 70 5.3 非對稱面缸內氣流滾轉運動 71 5.3.1 流場結構與衍化過程 71 5.3.1.1 取像截面於Z = 15.5 mm 71 5.3.1.2 取像截面於Z = -15.5 mm 74 5.4 非對稱面量化分析 78 5.4.1 循環平均滾轉比 78 5.4.1.1 取像截面於Z = 15.5 mm 78 5.4.1.2 取像截面於Z = -15.5 mm 78 5.5 整體量化分析 79 第六章 計算與實驗結果之比較與討論 80 6.1 速度向量與流線圖 80 6.2 速度分量 80 6.3 循環平均滾轉比 81 6.4 討論 81 第七章 結論與建議 83 7.1 結論 83 7.2 建議 83 參考文獻 85

[1]Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
[2]李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[3]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4]Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, March 1987, pp. 3-35.
[5]Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge and London, 1972.
[6]Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, pp. 1081-1092, SAE 930821.
[7]Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, SAE Transactions-Section 3, Vol. 98, 1989, pp. 2042-203, SAE 892096.
[8]Endres, H., Neuβer, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, pp. 942-953, SAE 920516.
[9]Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 729-740, SAE 910477.
[10]Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979, pp. 383-400, SAE 790095.
[11]Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979. pp. 371-382, SAE 790094.
[12]Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 107, 1985, pp. 232-240.
[13]Nadarajah, S., Balabani, S., Tindal, M. J., and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, No. 6, 1998, pp. 473-484.
[14]Khaligi, B. and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, pp. 6.877-6.891, SAE 880519.
[15]Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine − Focus on Cycle-Resolved Turbulence,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 294-321, SAE 900056.
[16]Arcoumanis, C., Hu, Z., Vafidis, C., and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark- Ignition Engines,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 375-391, SAE 900060.
[17]Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 354-374, SAE 900059.
[18]Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
[19]Rönnbäck, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 1824-1838, SAE 912376.
[20]Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
[21]Choi, W. C. and Guezennec, Y. G., “Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2-D PIV and 3-D PTV,” Journal of Engines, SAE Transactions-Section 3, Vol. 108, 1999, pp. 1447-1459, SAE 1999-01-0957.
[22]Lee, J. and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, pp. 629-647, SAE 930480.
[23]Valentino, G., Kaufman, D., and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 102, 1993, pp. 1156-1175, SAE 932700.
[24]Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a valve Seat and a Moving Piston,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, pp. 1627-1639, SAE 9961195.
[25]Jackson, N. S., Stokes, J., Sadler, M., Heikal, M. R., Faure, M., and Pommier, L., “Correlation of the Combustion Characteristics of Spark Ignition Engines with the In-Cylinder Flow Field Characterised Using PIV in a Water Analogy Rig,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1-13, SAE 971637.
[26]Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
[27]Rouland, E., Floch, A., Ahmed, A., Dionnet, D., and Trinite, M., “Characterization of Intake Generated Tumble Flow in 4-Valve Engine Using Cross-Correlation Particle Image Velocimetry,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 195.1-195.15.
[28]Richter, M., Axelsson, B., Aldén, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 108, 1999, pp. 1652-1663, SAE 1999-01-3540.
[29]Reeves, M., Towers, D. P., Tavender, B., and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, October 1999, pp. 247-261.
[30]Cao, Z.-M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
[31]Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 111, 2002, pp. 1919-1929, SAE 2002-01-1120.
[32]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
[33]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
[34]Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S., and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, January 2005, pp. 105-127.
[35]Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, pp. 1547-1562, SAE 981044.
[36]Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, pp. 777-793, SAE 970541.
[37]Flagan, R. C. and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
[38]Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, July 1992, pp. 191-215.
[39]Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, November 1990, pp. 1202-1215.
[40]Keane, R. D., Adrain, R. J., and Zhang, Y., “Super-Resolution Particle Imaging Velocimetry,” Measurements of Science and Technology, Vol. 6, No. 6, June 1995, pp. 754-768.
[41]Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, January 1999, pp. 1-10.
[42]Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, February 1981, pp. 240-242.
[43]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[44]林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程技術研究所碩士論文, 2006。
[45]黃志偉, 使用PIV技術診測進氣埠受調制之引擎缸內流場, 國立台灣科技大學機械工程技術研究所碩士論文, 2003。
[46]楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。

QR CODE