簡易檢索 / 詳目顯示

研究生: SURIYANTO
SURIYANTO
論文名稱: Wet process synthesis of Al-doped and Ga-doped ZnO nanoparticles
Wet process synthesis of Al-doped and Ga-doped ZnO nanoparticles
指導教授: 氏原真樹
Masaki Ujihara
口試委員: Toyoko Imae
Toyoko Imae
Ruei-San Chen
Ruei-San Chen
Wei-Nien Su
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 70
外文關鍵詞: aluminium doped zinc oxide, gallium doped zinc oxide, transparent conducting oxide, wet process
相關次數: 點閱:319下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In this study, ZnO nanoparticles doped by Al and Ga were prepared by a wet process. Then the performance of Al doped ZnO composite would be evaluated and analyzed The main purpose of this study was to investigate The effects of Al morphological properties of ZnO:Al and ZnO:Ga nanopowders. Objectives of this study are as following: analyzing of structural and dimensional of particles properties of ZnO:Al and ZnO:Ga prepared by the wet process. Crystallites (grain) size from XRD data using Scherrer equation AZO at 2 %, 3 %, 4 %, and 5 % (50 nm, 19 nm, 18 nm, and 4 nm) and GZO at 2 %, 3 %, 4%, and 5 % (59 nm, 37 nm, 20 nm, and 6 nm). The crystallite size of AZO particles decreased with increasing Al and Ga concentration. Morphological properties were characterized by scanning electron microscope (SEM). When the Al doping and Ga concentration increases from 2% to 5%, their nanostructures have sharper lines. The effect of Al doping on the optical properties of ZnO thin films was investigated describing the optical transmittance and optical reflectance spectra of Al-doped ZnO sample this range. 3.46 (Al 2 %), 3.67 (3 %), 3.68 (4 %), and 3.73 (5 %); and 3.53 (Ga 2 %), 3.55 (3 %), 3.58 (4 %), and 3.61 (5 %). The absorption spectra shifted towards the lower wavelength as the doping concentration increased. FTIR spectra suggested the formation of the wurtzite in both of the ZnO and the ZnO:Al. The presence of Al in ZnO lattice was confirmed by the peaks around 578, 688, and 1171 cm-1. Electrochemical properties were measured by cyclic voltammetry, and ZnO, ZnO:Al, and ZnO:Ga with doping concentration of 2 %, 3 %, 4 %, and 5 % showed pseudocapacitive nature, and the electrical current density increased as the doping concentration increased, which suggests the doping increased the electric conductivity of the materials.

Table of Contents Abstract i Acknowledgements i Table of Contents iii List of Figures iv List of Tables vi Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Previous Studies for Applications 8 1.3 Research Objectives 13 1.4 Research Flowchart and Thesis Structure 14 Chapter 2 Literature Review 16 2.1 Mechanism for photocatalytic degradation 16 2.2 Crystalline structure of ZnO and AZO thin film 20 2.3 Structural properties 20 2.4 Electrochemical study 23 Chapter 3 Experimental Section 26 3.1 Materials and Characterizations 26 3.2 Synthesis of ZnO nanoparticles 28 Chapter 4 Results and Discussion 30 4.1 Structural properties 30 4.2 Morphological properties 36 4.3 Optical and electrical properties 42 4.4 FTIR spectra 47 4.5 Electrochemical Properties 51 Chapter 5 Conclusions 55 References 56

References

1. Miyazaki, K.; Islam, N. Nanotechnology systems of innovation—An analysis of industry and academia research activities. Technovation 2007, 27, 661-675.
2. Dodd, A.; McKinley, A.; Saunders, M.; Tsuzuki, T. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. Journal of Nanoparticle Research 2006, 8, 43.
3. Walt, A. de Heer, A. Châtelain, and D. Ugarte. Science 1995, 270, 1179.
4. Tang, Y.; Cong, H.; Wang, Z.; Cheng, H.-M. Catalyst-seeded synthesis and field emission properties of flowerlike Si-doped AlN nanoneedle array. Applied Physics Letters 2006, 89, 253112.
5. Bonard, J.-M.; Salvetat, J.-P.; Stöckli, T.; De Heer, W.A.; Forró, L.; Châtelain, A. Field emission from single-wall carbon nanotube films. Applied physics letters 1998, 73, 918-920.
6. Liu, R.; Chen, Y.; Ding, S.; Li, Y.; Tian, Y. Preparation of highly transparent conductive aluminum-doped zinc oxide thin films using a low-temperature aqueous solution process for thin-film solar cells applications. Solar Energy Materials and Solar Cells 2019, 203, 110161.
7. Shokri, A.; Dejam, L. Experimental and theoretical investigations on temperature and voltage dependence of an Au/AZO thin-film Schottky diode. International Nano Letters 2019, 9, 161-168.
8. Islam, M.R.; Rahman, M.; Farhad, S.; Podder, J. Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surfaces and Interfaces 2019, 16, 120-126.
9. Hamada, K.; Ogawa, T.; Okumura, H.; Ishihara, K.N. The effect of substrate roughness on the properties of RF sputtered AZO thin film. MRS Communications 2019, 9, 697-701.
10. Wen, L.; Sahu, B.B.; Kim, H.R.; Han, J.G. Study on the electrical, optical, structural, and morphological properties of highly transparent and conductive AZO thin films prepared near room temperature. Applied Surface Science 2019, 473, 649-656.
11. Alhammadi, S.; Park, H.; Kim, W.K. Optimization of intrinsic ZnO thickness in Cu (In, Ga) Se2-based thin film solar cells. Materials 2019, 12, 1365.
12. Verma, A.; Khan, F.; Kumar, D.; Kar, M.; Chakravarty, B.; Singh, S.; Husain, M. Sol–gel derived aluminum doped zinc oxide for application as anti-reflection coating in terrestrial silicon solar cells. Thin Solid Films 2010, 518, 2649-2653.
13. Mridha, S.; Basak, D. Aluminium doped ZnO films: electrical, optical and photoresponse studies. Journal of Physics D: Applied Physics 2007, 40, 6902.
14. Caglar, M.; Ilican, S.; Caglar, Y. Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method. Thin Solid Films 2009, 517, 5023-5028.
15. Dejam, L.; Solaymani, S.; Achour, A.; Stach, S.; Ţălu, Ş.; Nezafat, N.B.; Dalouji, V.; Shokri, A.A.; Ghaderi, A. Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chemical Physics Letters 2019, 719, 78-90.
16. Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments 1983, 16, 1214.
17. Lee, S.J.; Kim, S.; Lim, D.C.; Kim, D.H.; Nahm, S.; Han, S.H. Inverted bulk-heterojunction polymer solar cells using a sputter-deposited Al-doped ZnO electron transport layer. Journal of Alloys and Compounds 2019, 777, 717-722.
18. Sarma, B.; Barman, D.; Sarma, B.K. AZO (Al: ZnO) thin films with high figure of merit as stable indium free transparent conducting oxide. Applied Surface Science 2019, 479, 786-795.
19. Bhujbal, P.K.; Pathan, H.M. Temperature dependent studies on radio frequency sputtered Al doped ZnO thin film. Engineered Science 2020, 10, 58-67.
20. Musavi, E.; Khanlary, M.; Khakpour, Z. Red-orange photoluminescence emission of sol-gel dip-coated prepared ZnO and ZnO: Al nano-crystalline films. Journal of Luminescence 2019, 216, 116696.
21. Sharmin, A.; Tabassum, S.; Bashar, M.; Mahmood, Z.H. Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application. Journal of Theoretical and Applied Physics 2019, 13, 123-132.
22. Özgür, M.; Pat, S.; Mohammadigharehbagh, R.; Musaoğlu, C.; Demirkol, U.; Elmas, S.; Özen, S.; Korkmaz, Ş. Al doped ZnO thin film deposition by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics 2019, 30, 624-630.
23. Prieto-Cortés, P.; Álvarez-Tamayo, R.; García-Méndez, M.; Durán-Sánchez, M.; Barcelata-Pinzón, A.; Ibarra-Escamilla, B. Magnetron sputtered Al-doped ZnO thin film as saturable absorber for passively Q-switched Er/Yb double clad fiber laser. Laser Physics Letters 2019, 16, 045101.
24. Nimbalkar, A.; Patil, N.; Ganbavle, V.; Mohite, S.; Madhale, K.; Patil, M. Sol-gel derived aluminium doped zinc oxide thin films: a view of aluminium doping effect on physicochemical and NO2 sensing properties. Journal of Alloys and Compounds 2019, 775, 466-473.
25. Kumar, K.D.A.; Thomas, R.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Thirumalai, J. Analysis of Pr co-doped Al: ZnO thin films using feasible nebulizer spray technique for optoelectronic technology. Applied Physics A 2019, 125, 1-12.
26. Bhoomanee, C.; Ruankham, P.; Choopun, S.; Wongratanaphisan, D. Diffusion-induced doping effects of Ga in ZnO/Ga/ZnO and AZO/Ga/AZO multilayer thin films. Applied Surface Science 2019, 474, 127-134.
27. Pelicano, C.M.; Yanagi, H. Enhanced charge transport in Al-doped ZnO nanotubes designed via simultaneous etching and Al doping of H 2 O-oxidized ZnO nanorods for solar cell applications. Journal of Materials Chemistry C 2019, 7, 4653-4661.
28. Saini, S.; Mele, P.; Oyake, T.; Shiomi, J.; Niemelä, J.-P.; Karppinen, M.; Miyazaki, K.; Li, C.; Kawaharamura, T.; Ichinose, A. Porosity-tuned thermal conductivity in thermoelectric Al-doped ZnO thin films grown by mist-chemical vapor deposition. Thin Solid Films 2019, 685, 180-185.
29. Liu, H.; Wang, X.; Li, M.; Yu, S.; Zheng, R. Optical and electrical properties of Al doped ZnO thin film with preferred orientation in situ grown at room temperature. Ceramics International 2019, 45, 14347-14353.
30. Kabir, M.H.; Ali, M.M.; Kaiyum, M.A.; Rahman, M. Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. Journal of Physics Communications 2019, 3, 105007.
31. Ameh, E. A review of basic crystallography and x-ray diffraction applications. The International Journal of Advanced Manufacturing Technology 2019, 105, 3289-3302.
32. Zhang, J.-M.; Zhang, Y.; Xu, K.-W.; Ji, V. General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Communications 2006, 139, 87-91.
33. Ramgir, N.S.; Hwang, Y.K.; Mulla, I.S.; Chang, J.-S. Effect of particle size and strain in nanocrystalline SnO2 according to doping concentration of ruthenium. Solid state sciences 2006, 8, 359-362.
34. Zak, A.K.; Majid, W.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences 2011, 13, 251-256.
35. Pecharsky, V.; Zavalij, P. Fundamentals of powder diffraction and structural characterization of materials; Springer Science & Business Media: 2008.
36. Mostafa, A.M.; Menazea, A. Laser-assisted for preparation ZnO/CdO thin film prepared by pulsed laser deposition for catalytic degradation. Radiation Physics and Chemistry 2020, 176, 109020.
37. Liu, X.; Huang, K.; Lin, X.; Li, H.; Tao, T.; Wu, Q.; Zheng, Q.; Huang, L.; Ni, Y.; Chen, L. Transparent and conductive cellulose film by controllably growing aluminum doped zinc oxide on regenerated cellulose film. Cellulose 2020, 27, 4847-4855.
38. Tseng, M.-C.; Wuu, D.-S.; Chen, C.-L.; Lee, H.-Y.; Chien, C.-Y.; Liu, P.-L.; Horng, R.-H. Characteristics of atomic layer deposition–grown zinc oxide thin film with and without aluminum. Applied Surface Science 2019, 491, 535-543.
39. Ghosh, J.; Ghosh, R.; Giri, P. Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sensors and Actuators B: Chemical 2018, 254, 681-689.
40. Jo, G.H.; Kim, S.-H.; Koh, J.-H. Enhanced electrical and optical properties based on stress reduced graded structure of Al-doped ZnO thin films. Ceramics International 2018, 44, 735-741.
41. Dong, J.; Han, D.; Li, H.; Yu, W.; Zhang, S.; Zhang, X.; Wang, Y. Effect of Al doping on performance of ZnO thin film transistors. Applied Surface Science 2018, 433, 836-839.
42. Asemi, M.; Ahmadi, M.; Ghanaatshoar, M. Preparation of highly conducting Al-doped ZnO target by vacuum heat-treatment for thin film solar cell applications. Ceramics International 2018, 44, 12862-12868.
43. Anand, V.; Sakthivelu, A.; Kumar, K.D.A.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Algarni, H. Rare earth Eu 3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics. Journal of Sol-Gel Science and Technology 2018, 86, 293-304.
44. Sabeeh, S.H.; Jassam, R.H. The effect of annealing temperature and Al dopant on characterization of ZnO thin films prepared by sol-gel method. Results in Physics 2018, 10, 212-216.
45. Kumar, K.D.A.; Valanarasu, S.; Rosario, S.R.; Ganesh, V.; Shkir, M.; Sreelatha, C.; AlFaify, S. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics. Solid State Sciences 2018, 78, 58-68.
46. Monemdjou, A.; Ghodsi, F.; Mazloom, J. The effects of surface morphology on optical and electrical properties of nanostructured AZO thin films: fractal and phase imaging analysis. Superlattices and Microstructures 2014, 74, 19-33.
47. Xu, Z.; Deng, H.; Li, Y.; Guo, Q.; Li, Y. Characteristics of Al-doped c-axis orientation ZnO thin films prepared by the sol–gel method. Materials Research Bulletin 2006, 41, 354-358.
48. Musat, V.; Teixeira, B.; Fortunato, E.; Monteiro, R.; Vilarinho, P. Al-doped ZnO thin films by sol–gel method. Surface and Coatings Technology 2004, 180, 659-662.
49. Shahzad, M.B.; Qi, Y.; Lu, H.; Wang, X. A study on the Al doping behavior with sol aging time and its effect on structural and optical properties of sol–gel prepared ZnO thin films. Thin solid films 2013, 534, 242-248.
50. Gürbüz, O.; Kurt, İ.; Çalışkan, S.; Güner, S. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films. Applied Surface Science 2015, 349, 549-560.
51. Gürbüz, O.; Güner, S. Role of annealing temperature on electrical and optical properties of Al-doped ZnO thin films. Ceramics International 2015, 41, 3968-3974.
52. Srikant, V.; Clarke, D.R. On the optical band gap of zinc oxide. Journal of Applied Physics 1998, 83, 5447-5451.
53. Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Reports on progress in physics 2009, 72, 126501.
54. Oktik, S.; Russell, G.; Brinkman, A. Properties of ZnO layers deposited by “photo-assisted” spray pyrolysis. Journal of crystal growth 1996, 159, 195-199.
55. Pushparajah, P.; Arof, A.K.; Radhakrishna, S. Physical properties of spray pyrolysed pure and doped ZnO thin films. Journal of Physics D: Applied Physics 1994, 27, 1518.
56. He, J.; Zhang, Y.; Guo, Y.; Rhodes, G.; Yeom, J.; Li, H.; Zhang, W. Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms. Environment international 2019, 132, 105105.
57. Bechambi, O.; Sayadi, S.; Najjar, W. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry 2015, 32, 201-210.
58. Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale research letters 2017, 12, 1-10.
59. Elamin, N.; Elsanousi, A. Synthesis of ZnO nanostructures and their photocatalytic activity. Journal of Applied and Industrial Sciences 2013, 1, 32-35.
60. Rao, A.N.; Sivasankar, B.; Sadasivam, V. Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. Journal of Molecular Catalysis A: Chemical 2009, 306, 77-81.
61. Bechambi, O.; Jlaiel, L.; Najjar, W.; Sayadi, S. Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism. Materials Chemistry and Physics 2016, 173, 95-105.
62. Wang, W.W.; Zhu, Y.J.; Yang, L.X. ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Advanced Functional Materials 2007, 17, 59-64.
63. Ruan, S.; Huang, W.; Zhao, M.; Song, H.; Gao, Z. A Z-scheme mechanism of the novel ZnO/CuO nn heterojunction for photocatalytic degradation of Acid Orange 7. Materials Science in Semiconductor Processing 2020, 107, 104835.
64. Thejaswini, T.; Prabhakaran, D.; Maheswari, M.A. Soft synthesis of potassium co-doped Al–ZnO nanocomposites: a comprehensive study on their visible-light driven photocatalytic activity on dye degradation. Journal of Materials Science 2016, 51, 8187-8208.
65. Zhang, X.; Chen, Y.; Zhang, S.; Qiu, C. High photocatalytic performance of high concentration Al-doped ZnO nanoparticles. Separation and Purification Technology 2017, 172, 236-241.
66. Mahdavi, R.; Talesh, S.S.A. Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Advanced Powder Technology 2017, 28, 1418-1425.
67. Zhang, L.; Zhu, X.; Wang, Z.; Yun, S.; Guo, T.; Zhang, J.; Hu, T.; Jiang, J.; Chen, J. Synthesis of ZnO doped high valence S element and study of photogenerated charges properties. RSC advances 2019, 9, 4422-4427.
68. Trandafilović, L.V.; Jovanović, D.J.; Zhang, X.; Ptasińska, S.; Dramićanin, M. Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Applied Catalysis B: Environmental 2017, 203, 740-752.
69. Kuriakose, S.; Satpati, B.; Mohapatra, S. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Physical Chemistry Chemical Physics 2015, 17, 25172-25181.
70. Majumder, S.; Chatterjee, S.; Basnet, P.; Mukherjee, J. ZnO based Nanomaterials for Photocatalytic degradation of Aqueous Pharmaceutical Waste Solutions–A Contemporary Review. Environmental Nanotechnology, Monitoring & Management 2020, 100386.
71. Elhalil, A.; Elmoubarki, R.; Farnane, M.; Machrouhi, A.; Sadiq, M.; Mahjoubi, F.; Qourzal, S.; Barka, N. Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnO-Al2O3 heterostructure. Environmental nanotechnology, monitoring & management 2018, 10, 63-72.
72. Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 2018, 81, 536-551.
73. Khan, S.H.; Pathak, B. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental Nanotechnology, Monitoring & Management 2020, 13, 100290.
74. Al-Sabahi, J.; Bora, T.; Al-Abri, M.; Dutta, J. Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol. Materials 2016, 9, 238.
75. Ahmad, M.; Ahmed, E.; Zhang, Y.; Khalid, N.; Xu, J.; Ullah, M.; Hong, Z. Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Current Applied Physics 2013, 13, 697-704.
76. Lamba, R.; Umar, A.; Mehta, S.; Kansal, S.K. ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. Journal of Alloys and Compounds 2015, 653, 327-333.
77. Mia, M.; Habiba, U.; Pervez, M.; Kabir, H.; Nur, S.; Hossen, M.; Sen, S.; Hossain, M.K.; Iftekhar, M.A.; Rahman, M.M. Investigation of aluminum doping on structural and optical characteristics of sol–gel assisted spin-coated nano-structured zinc oxide thin films. Applied Physics A 2020, 126, 1-12.
78. Mostafa, A.M.; Mwafy, E.A. Synthesis of ZnO/CdO thin film for catalytic degradation of 4-nitrophenol. Journal of Molecular Structure 2020, 1221, 128872.
79. TS, M. The interpretation of the properties of indium antimonide. 1954.
80. Urper, O.; Baydogan, N. Effect of Al concentration on optical parameters of ZnO thin film derived by Sol-Gel dip coating technique. Materials Letters 2020, 274, 128000.
81. Kumar, N.; Chowdhury, A.H.; Bahrami, B.; Khan, M.R.; Qiao, Q.; Kumar, M. Origin of enhanced carrier mobility and electrical conductivity in seed-layer assisted sputtered grown Al doped ZnO thin films. Thin Solid Films 2020, 700, 137916.
82. Edison, D.J.; Nirmala, W.; Kumar, K.D.A.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Physica B: Condensed Matter 2017, 523, 31-38.
83. Lee, M.; Park, Y.; Kim, K.; Hong, J. Influence of sputtering conditions on the properties of aluminum-doped zinc oxide thin film fabricated using a facing target sputtering system. Thin Solid Films 2020, 703, 137980.
84. Canteli, D.; Torres, I.; Fernández, S.; Santos, J.; Morales, M.; Molpeceres, C. Photon-collection improvement from laser-textured AZO front-contact in thin-film solar cells. Applied Surface Science 2019, 463, 775-780.
85. Rong, Q.; Zhao, J.; Yu, H.; Li, N.; Zhang, Q.; Yuan, D.; Liu, W.; Zheng, D.; Gao, X.; Shui, L. Light manipulating electrode based on high optical haze aluminum-doped zinc oxide for highly efficient indium-tin-oxide free organic solar cells with over 13% efficiency. Journal of Materials Chemistry C 2019, 7, 8515-8521.
86. Nomoto, J.; Makino, H.; Nakajima, T.; Tsuchiya, T.; Yamamoto, T. Improvement of the properties of direct-current magnetron-sputtered Al-doped ZnO polycrystalline films containing retained Ar atoms using 10-nm-thick buffer layers. ACS omega 2019, 4, 14526-14536.
87. Zenati, A.; Thammalangsy, S. RAFT synthesis, properties and morphologies via thermal annealing of new azo-based ABA triblock copolymers bearing rigid and soft segments. International Journal of Polymer Analysis and Characterization 2019, 24, 639-658.
88. Wang, Y.; Hu, D.; Jia, H.; Wang, Q. Efficient enhancement of light trapping in the double-textured al doped ZnO films with nanorod and crater structures. Physica B: Condensed Matter 2019, 565, 9-13.
89. Shirshneva-Vaschenko, E.; Sokura, L.; Baidakova, M.; Yagovkina, M.; Snezhnaia, Z.G.; Shirshnev, P.; Romanov, A. Study of the influence of the ZnO: Al polycrystalline film morphology on the silver nanoparticles formation. In Proceedings of Journal of Physics: Conference Series; p. 055026.
90. Ban, D.K.; Patel, M.; Nguyen, T.T.; Kim, J. All‐Transparent Oxide Photovoltaics: AZO Embedded ZnO/NiO/AgNW Band Selective High‐Speed Electric Power Window. Advanced Electronic Materials 2019, 5, 1900348.
91. Bose, S.; Mandal, S.; Barua, A.; Mukhopadhyay, S. Sacrificial layer assisted front textured glass substrate with improved light management in thin film silicon solar cells. Journal of Materials Science: Materials in Electronics 2019, 30, 2622-2629.
92. Cosme, I.; Vázquez-y-Parraguirre, S.; Malik, O.; Mansurova, S.; Carlos, N.; Tavira-Fuentes, A.; Ramírez, G.; Kudriavtsev, Y. Differences between (103) and (002) X-ray diffraction characteristics of nanostructured AZO films deposited by RF magnetron sputtering. Surface and Coatings Technology 2019, 372, 442-450.
93. Poddar, N.P.; Mukherjee, S. Effect of substrates and post-deposition annealing on rf-sputtered Al-doped ZnO (AZO) thin films. Journal of Materials Science: Materials in Electronics 2019, 30, 14269-14280.
94. Park, H.; Le, A.H.T.; Lee, Y.-J.; Jung, J.; Pham, D.P.; Cho, J.; Yi, J. Highly Transparency and High Mobility Bilayer Aluminum Doped Zinc Oxide Films on Periodic Textured Glass Morphology for Thin Film Silicon Solar Cells. Journal of Nanoelectronics and Optoelectronics 2018, 13, 1835-1840.
95. Zhu, J.; Wang, Y.; Hu, D.; Jia, H.; Zhao, W.; Tao, C.; Xu, S. Newfangled crater-nanorod/honeycomb-like double-textured ZnO: Al films with enhanced light trapping. Optik 2020, 166189.
96. Kumar, K.D.A.; Valanarasu, S.; Rosario, S.R. Preparation and Characterization of Sol–Gel Dip Coated Al: ZnO (AZO) Thin Film for Opto-Electronic Application. Semiconductors 2019, 53, 447-451.
97. Sakthivelu, A.; Kumar, K.D.A.; Valanarasu, S.; Shkir, M.; Ganesh, V.; Kathalingam, A.; AlFaify, S. A noticeable effect of novel Nd 3+ doping on physical properties of nebulizer spray deposited AZO thin films for optoelectronic technology. Optical and Quantum Electronics 2019, 51, 1-18.
98. Meng, L.; Chai, H.; Yang, X.; Lv, Z.; Yang, T. Optically rough and physically flat TCO substrate formed by coating ZnO thin film on pyramid-patterned glass substrate. Solar Energy Materials and Solar Cells 2019, 191, 459-465.
99. Aryanto, D.; Marwoto, P.; Sudiro, T.; Wismogroho, A. Growth of a-axis-oriented Al-doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering. In Proceedings of Journal of Physics: Conference Series; p. 012031.
100. Benabbas, K.; Zabat, N.; Hocini, I. Azo dye removal by acid pretreated biomass and its regeneration by visible light photocatalysis with incorporated CuO. Environmental technology 2020, 1-18.
101. Mauit, O.; Caffrey, D.; Ainabayev, A.; Kaisha, A.; Toktarbaiuly, O.; Sugurbekov, Y.; Sugurbekova, G.; Shvets, I.V.; Fleischer, K. Growth of ZnO: Al by atomic layer deposition: Deconvoluting the contribution of hydrogen interstitials and crystallographic texture on the conductivity. Thin Solid Films 2019, 690, 137533.
102. Yu, S.; Yang, T.; Sui, M.; Sun, G.-Y.; Chen, T.; Jin, L.Y. Photo-controlled reversible assemblies from rod-coil molecules with azobenzene group. Dyes and Pigments 2019, 171, 107694.
103. Karthika, M.; Chi, H.; Li, T.; Wang, H.; Thomas, S. Super-hydrophobic graphene oxide-azobenzene hybrids for improved hydrophobicity of polyurethane. Composites Part B: Engineering 2019, 173, 106978.
104. Cruz, A.; Ruske, F.; Eljarrat, A.; Michalowski, P.P.; Morales-Vilches, A.B.; Neubert, S.; Wang, E.-C.; Koch, C.T.; Szyszka, B.; Schlatmann, R. Influence of silicon layers on the growth of ITO and AZO in silicon heterojunction solar cells. IEEE Journal of Photovoltaics 2019, 10, 703-709.
105. Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds 2011, 509, 1648-1660.
106. Kumar, R.; Umar, A.; Kumar, G.; Akhtar, M.; Wang, Y.; Kim, S. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceramics International 2015, 41, 7773-7782.
107. Sin, J.-C.; Lam, S.-M.; Satoshi, I.; Lee, K.-T.; Mohamed, A.R. Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Applied Catalysis B: Environmental 2014, 148, 258-268.
108. Narayanan, N.; NK, D. Ga Dopant Induced Band Gap Broadening and Conductivity Enhancement in Spray Pyrolysed Zn0. 85Ca0. 15O thin Films. Materials Research 2018, 21.
109. Borhani Zarandi, M.; Amrollahi Bioki, H. Effects of Cobalt Doping on Optical Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating Technique. Journal of Optoelectronical Nanostructures 2017, 2, 33-44.
110. Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics 2014, 8, 123-134.
111. Manikandan, A.; Manikandan, E.; Meenatchi, B.; Vadivel, S.; Jaganathan, S.; Ladchumananandasivam, R.; Henini, M.; Maaza, M.; Aanand, J.S. Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: synthesis structural optical and antibacterial studies. Journal of Alloys and Compounds 2017, 723, 1155-1161.
112. Kumar, K.D.A.; Valanarasu, S.; Kathalingam, A.; Ganesh, V.; Shkir, M.; AlFaify, S. Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: a film for key optoelectronic applications. Applied Physics A 2017, 123, 1-11.
113. Mamat, M.H.; Sahdan, M.Z.; Amizam, S.; Rafaie, H.A.; Khusaimi, Z.; Rusop, M. Optical and electrical properties of aluminum doped zinc oxide thin films at various doping concentrations. Journal of the ceramic society of Japan 2009, 117, 1263-1267.

QR CODE