簡易檢索 / 詳目顯示

研究生: 陳麒元
Chi-yuan Chen
論文名稱: 利用微弧氧化法在6061鋁合金上鍍製ZrO2/Al2O3氧化膜之研究
The research of ZrO2/Al2O3 oxide film coated on 6061 aluminium alloy by microarc discharge oxidation
指導教授: 周振嘉
Chen-chia Chou
口試委員: 李九龍
Chiu-Lung Li
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 微弧氧化鋁合金氧化鋯
外文關鍵詞: microarc discharge oxidation, aluminium, zirconia
相關次數: 點閱:311下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用微弧氧化在6061鋁合金上鍍製氧化鋯MDO氧化膜,並針對其顯微結構、硬度、XRD、韌性進行分析。
首先在鹼性電解液中添加含鋯鹽類(K2ZrF6)並在不同負電壓下進行實驗。由實驗結果發現,在6061鋁合金上鍍製氧化鋁MDO氧化膜比鍍製氧化鋯MDO氧化膜容易許多,由於含鋯鹽類在鹼性容易中形成Zr(OH)4顆粒沉澱,相較於鍍製氧化鋁MDO氧化膜,Zr(OH)4顆粒使得在微弧氧化過程中導致膜層孔洞多且厚度不均。若是將含鋯鹽類溶於酸性溶液中則可避免形成Zr(OH)4顆粒沉澱,但是酸性電解液會對試片及陰極造成破壞,無法鍍製緻密平整的氧化鋯MDO氧化膜。於是在鹼性電解液中添加分散劑(NaPO3)6 解決的Zr(OH)4顆粒沉澱問題,經過一系列不同負電壓實驗結果可知負電壓100 V時有最佳結果,XRD結果為t相氧化鋯(t-ZrO2),但還是有小孔洞散佈在氧化鋯鍍層內部,於是在含鋯鹽類電解液中添加了鋁酸鈉(NaAlO2) 2 g/L,負電壓100 V時有最佳結果,膜層緻密性上升,XRD結果依然為t相氧化鋯(t-ZrO2)。當含鋯鹽類電解液中鋁酸鈉大於 4 g/L,膜層厚度及緻密性卻是下降,是因為鋁酸鈉是弱鹼性,添加過多導致Zr(OH)4顆粒沉澱問題,XRD會以-Al2O3為主,以上結果皆為電壓控制的電源模式進行微弧氧化,當膜層生長厚度上升,則電流開始下降,沒有足夠能量使膜層繼續成長且緻密化。
為了追求更好膜層緻密性及厚度,改成電流控制的電源模式進行鍍製氧化鋯的微弧氧化實驗,沒有添加鋁酸鈉含鋯鹽類電解液結果是整體厚度雖然有幅上升,但孔洞更大了,添加鋁酸鈉含鋯鹽類電解液電流在0.3~0.5 A時有較佳的結果,之後增加氟鋯酸鉀含量來增加氧化膜緻密性,並控制微弧氧化製程後期之電壓,減少大尺寸arc對氧化膜之破壞,XRD會以t-ZrO2為主,但m-ZrO2增加,相較於MDO氧化鋁膜,氧化鋯膜具有較佳韌性,但過多氟鋯酸鉀含量導致韌性下降,抗腐蝕測試結果顯示出氟鋯酸鉀含量上升,膜層厚度及緻密性上升,所以抗腐蝕性也上升,氟鋯酸鉀到達22g/L時,由於表面大孔洞以及基材與膜層之間的裂痕貫穿整個膜層,導致MDO氧化膜失去保護效果,於是抗腐蝕性下降。


Zirconia composite coating was prepared on 6061 aluminum alloy by microarc discharge oxidation. Tthe microstructure, hardness, XRD and toughness have been investigated in this study.
First, the the experiments were carried out in alkaline electrolyte containing K2ZrF6 at different negative voltage. The results indicated that it is easier to form alumina than Zirconia for MDO coating on aluminum alloy, because Zr(OH)4 partilce were formed in alkaline easily. Compare with formation of alumina MDO coating, Zr(OH)4 partilce made a lot of pores during coating and which not uniform coating. K2ZrF6 dissolves in acidity electrolyte to prevent formation of Zr(OH)4 partilce. But the acidity electrolyte will corroded the cathode lead zirconia composite coating not to be compact. The problem of Zr(OH)4 partilce precipitation was solve by adding dispersant (NaPO3)6. There is a good experimental result that was carried out at negative voltage 100 V what XRD result indicated t-ZrO2 mainly. In order to get more compact coating, the sodium aluminate (NaAlO2) 2 g/L was added into the K2ZrF6 electrolyte. There is also a good experimental result was carried out at negative voltage 100 V and the coating was more compact than before and XRD result indicated t-ZrO2 mainly. When the contain of aluminum sodium aluminate in the K2ZrF6 electrolyte is greater than 4 g / L, the thickness and density were decreasing . Because sodium aluminate is weak alkaline, it caused the problem of Zr(OH)4 partilce precipitation when sodium aluminate is too much. XRD result indicated -Al2O3 mainly. Above MDO result were carried by voltage control. When the coating thickness is increasing ,the current is decreasing , and than there is no energy to let coating to grow and to be more compact .
In order to get more compact and more thicker coating, experiment process was change from voltage control to current control. The result show that the thickness were increase without sodium aluminate, but there were still some big pores in the coating. Better result were carried out with sodium aluminate by 0.3~0.5A in K2ZrF6 electrolyte.. And then the density were more compact by increasing contain of K2ZrF6. The voltage was limited at prosess of later stage to avoid damage from larger size of arc. XRD result indicated t-ZrO2 mainly, and the more m-ZrO2 were forming, when the contain of K2ZrF6 increasing in electrolyte. Zirconia MDO coating have higher toughness than alumina MDO coating, but it cause toughness decrease when K2ZrF6 contain too much in electrolyte . Corrosion resistance test results show that when the contain of K2ZrF6 increasing in electrolyte, the thickness and density of the coating increase , and the corrosion resistance increased. The corrosion resistance decreases due to the large pores between the surface layer and the substrate ,and the cracks were throughout the coating, when K2ZrF6 reached 22g / L.

摘要I AbstractIII 目錄V 圖目錄VII 表目錄X 第一章 緒論1 1-1 前言 1 1-2 研究目的2 第二章 文獻回顧3 2.1 鋁合金之簡介3 2.1.1 鋁合金3 2.1.2 鋁合金之分類 3 2.1.3 6061鋁合金之介紹5 2.2 微弧氧化簡介6 2.2.1 微弧氧化之發展6 2.2.2 微弧氧化之原理8 2.2.3 微弧氧化膜層的生長 11 2.2.4 微弧氧化膜層結構及特性 13 2.2.5 微弧氧化與傳統陽極處理之比較15 2.3 合金元素對MDO氧化膜之影響16 2.4 電解液成分對MDO氧化膜之影響18 2.5 電性參數對MDO氧化膜之影響21 2.6 運用微弧氧化在鋁合金上鍍製氧化鋯22 2.6.1 氧化鋯之簡介 22 2.6.2 氧化鋯韌性機制24 2.6.3 運用微弧氧化在鋁合金上鍍製氧化鋯25 2.6.4 電解液中添加氧化鋯(ZrO2)顆粒25 2.6.5 電解液中添加含有鋯成分鹽類30 第三章 實驗規劃及方法 34 3.1 材料準備 34 3.2 微弧氧化設備及實驗步驟 35 3.3 MDO氧化膜實驗分析儀器原理 37 3.3.1 掃描式電子顯微鏡37 3.3.2 微硬度及韌性測試37 3.3.3 X光繞射分析儀(XRD)39 3.3.4 極化曲線測試 40 第四章 結果與討論41 4.1 氟鋯酸鉀在電解液系統沉澱問題及改善 41 4.2 不同負電壓下含鋯MDO氧化膜的變化44 4.2.1 不同負電壓下的電流分析44 4.2.2 不同負電壓下MDO氧化膜層分析47 4.2.3 不同負電壓下的XRD及硬度分析52 4.3 添加鋁酸鈉對含鋯MDO氧化膜層之影響 54 4.3.1 添加鋁酸鈉之不同負電壓下的電流分析54 4.3.2 添加鋁酸鈉之含鋯MDO氧化膜層分析 57 4.3.3 添加鋁酸鈉之不同負電壓下含鋯MDO氧化膜層的XRD及硬度分析61 4.4添加不同比例鋁酸鈉於氟鋯酸鉀電解液中對MDO氧化膜層之影響63 4.4.1添加不同比例鋁酸鈉於氟鋯酸鉀電解液中之電流分析65 4.4.2 添加不同比例鋁酸鈉於氟鋯酸鉀電解液中氧化膜層分析67 4.4.3 添加不同比例鋁酸鈉於氟鋯酸鉀電解液中氧化膜的XRD及硬度分析70 4.5 電流控制模式對含鋯MDO氧化膜之影響 72 4.5.1 電流控制模式對含鋯MDO氧化膜層的電壓分析73 4.5.2 電流控制模式對含鋯MDO氧化膜層分析75 4.5.3 電流控制模式對含鋯MDO氧化膜層的XRD及硬度分析79 4.6 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜影響81 4.6.1 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜的電壓分析82 4.6.2 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜層分析83 4.6.3 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜的XRD及硬度分析86 4.6.4 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜的韌性分析88 4.6.5 電流控制模式,氟鋯酸鉀含量對含鋯MDO氧化膜抗腐蝕性分析90 4.7 利用微弧氧化在鋁合金上鍍製氧化鋯之各階段抗腐蝕性分析92 第五章 結論95 參考文獻97

[1]John E. HATCH, ALUMINUM,1984.
[2]林昆民,銲條合金成分對AA7005鋁合金擠型材銲後熱處理製程之影響,2005.
[3]徐栢榮, 利用雙極脈衝電源微弧氧化法探討占空比和頻率對於7075-T6 鋁合金表面氧化膜層之影響,2009.
[4]馮克林等人,微電弧電漿電化學技術,輕金屬專題,工業材料雜誌,第211期,104-109,2004.
[5]G.V. Markova, Internal friction during martensitic transformation in highmanganese Mn–Cu alloys, Materials Science and Engineering,370,473-476, 2004 .
[6]薛文斌,鄧志威,來永春,陳如意,張通和,有色金屬表面微弧氧化技術評述,金屬熱處理,2000.
[7]Yang Guangliang, L. Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsum, The effects of current density on the phase composition and microstructureproperties of micro-arc oxidation coating,Journal of Alloys and Compounds.345, 196-200, 2002.
[8]L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, A. Matthews,“Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions”, ElectrochimicaActa, 49, 2085–2095, 2004.
[9] A.L. Yerokhin , X. Nie , A. Leyland , A. Matthews , S.J. Dowey , Plasma electrolysis for surface engineering, Surface and Coatings Technology, 122, 2-3, 73-93, 1999.
[10]鐘時俊、O. Demine、翁榮洲,微電弧氧化表面處理原理與應用,工業材料雜誌,194,176-180,2003.
[11] Wenbin Xue , Xiuling Shi , Ming Hua , Yongliang Li ,Preparation of anti-corrosion films by microarc oxidation on an Al–Si alloy, Applied Surface Science 253, 6118–6124, 2007
[12]F. Me’cuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, G. Henrio, Diagnostics of an electrolytic microarc process for aluminium alloy oxidation, Surface & Coatings Technology 200, 804– 808, 2005.
[13] E. Matykina , R. Arrabal , D.J. Scurr , A. Baron , P. Skeldon , G.E. Thompson ,Investigation of the mechanism of plasma electrolytic oxidation of aluminium using 18O tracer, Corrosion Science ,52,1070–1076,2010.
[14] Tongbo Wei, Fengyuan Yan, Jun Tian ,Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy, Journal of Alloys and Compounds 389 ,169–176, 2005.
[15] G. Sundararajan, L. Rama Krishna ,Mechanisms underlying the formation of thick alumina coatings through, Surface and Coatings Technology,167 , 269–277, 2003.
[16] L. Rama Krishna, A. Sudha Purnima, G. Sundararajan ,A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings, Wear 261 ,1095–1101, 2006.
[17] K. Tillous , T. Toll-Duchanoy , E. Bauer-Grosse , L. Hericher , G. Geandier ,Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74, Surface & Coatings Technology 203,2969–2973 ,2009.
[18]Yucel Gencer, Ali Emre Gulec,The effect of Zn on the microarc oxidation coating behavior of synthetic Al–Zn binary alloys, Journal of Alloys and Compounds 525 ,159–165, 2012.
[19] Yong-Jun Oh, Jung-Il Mun, Jung-Hwan Kim,Effects of alloying elements on microstructure and protective properties of Al2O3 coatings formed on aluminum alloy substrates by plasma electrolysis, Surface & Coatings Technology 204 ,141–148, 2009.
[20] Mehmet Tarakci,Plasma electrolytic oxidation coating of synthetic Al–Mg binary alloys, M A T E R I A L S C H A R A C T E R I Z A T I O N, 6 2, 1 2 1 4 – 1 2 2 1, 2 0 1 1 .
[21]東青,陳傳忠,王德雲,雷廷權,鋁及其合金的微弧氧化技術,中國表面工程,第18卷,第6期,2005.
[22]蔣永鋒,李均明,蔣百靈,符長璞,鋁合金微弧氧化陶瓷層形成因素的分析, 表面技術, 第3o卷,第2期,2001.
[23] Barbara Kazanski, Alexei Kossenko, Alex Lugovskoy
,Michael Zinigrad,Fluoride Influence on the Properties of Oxide Layer Produced by Plasma Electrolytic Oxidation, Defect and Diffusion Forum Vols,326-328,498-503, 2012.
[24] Zhijiang Wang, Lina Wua, Wei Cai, Shan A, Zhaohua Jiang,Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy, Journal of Alloys and Compounds, 505,188–193,2010.
[25] Chun-Chieh Tseng , Jeou-Long Lee , Tzu-Hsuan Kuo , Shien-Nan Kuo , Kuo-Hui Tseng ,The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy, Surface & Coatings Technology 206,3437–3443, 2012.
[26] DING Jun, LIANG Jun, HU Li-tian, HA0 Jing-cheng, XUE Qun-ji ,Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte, Trans. Nonferrous Met. SOC. China 17,244-249, 2007.
[27] H.Y. Zheng, Y.K. Wang, B.S. Li, G.R. Han,The effects of Na2WO4 concentration on the properties of microarc oxidation coatings on aluminum alloy, Materials Letters 59 ,139–142, 2005.
[28] Aytekin Polata, Murat Makaracib, Metin Usta, Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate, Journal of Alloys and Compounds 504 ,519–526,2010.
[29] F. Jaspard-Mecuson , T. Czerwiec , G. Henrion , T. Belmonte ,
L. Dujardin , A. Viola , J. Beauvir, Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process, Surface & Coatings Technology 201, 8677–8682, 2007.
[30] A.L. Yerokhin, T, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews, Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surface & Coatings Technology 199, 150– 157, 2005.
[31] Zhongping Yao, Yunfu Liu, Yongjun Xu, Zhaohua Jiang, Fuping Wang, Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation, Materials Chemistry and Physics 126 ,227–231, 2011.
[32] Zhongping Yao, Yongjun Xu, Zhaohua Jiang, Fuping Wang,Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings, Journal of Alloys and Compounds 488 ,273–278, 2009.
[33]翁海峰,陳秋龍,蔡珣,鮑明東,脈衝占空比對純鋁微弧氧化膜的影響, 表面技術,第34 卷,第5期,2005.
[34] Hanhua Wu , Jianbo Wang , Beiyu Long , Beihong Long ,
Zengsun Jin , Wang Naidan , Fengrong Yu , Dongmei Bi ,Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy, Applied Surface Science 252 ,1545–1552, 2005.
[35]李沛傑,以油酸分散膠體配合氣氛加熱製造奈米氧化鋯粉末之研究.2002.
[36]H. J. H. Richard, P. M. Kelly, B. C. Muddle, Transformation Toughening in Zirconia-ContainingCeramics, J. Am. Ceram. Soc., 83, 461–87, 2000.
[37] Deuk Yong Lee , Dae-Joon Kim , Yo-Seung Song, Chormaticoty, Hydrothermal Stability, and Mechanical Properties of t-ZrO2/Al2O3 Composites Doped with Yittrium, Niobium ,and Ferric Oxides, Materials Science and Engineering A289, 1–7, 2000.
[38]黃國綸,摻雜氧化鈷與氧化鋁對於氧化鋯之機械與光學性質影響,2007.
[39]陳俊偉,固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性研究,2005.
[40] NILS CLAUSSEN, Stress-Induced Transformation of Tetragonal ZrO, Particles in Ceramic Matrices, Journal of The American Ceramic Society-Discussions and Notes Vol. 61, No. 1-2.
[41] NILS CLAUSSEN ,Comments on “Precipitation in Partially Stabilized Zirconia”, Journal of the American Ceramic Society-Discussions and Notes,1976.
[42] E. Matykina, R. Arrabal, F. Monfort, P. Skeldon , G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Applied Surface Science 255,2830–2839,2008.
[43] E. Matykina A R, Arrabal A P, Skeldon A G, E. Thompson, Incorporation of zirconia nanoparticles into coatings formed on aluminium by AC plasma electrolytic oxidation, J Appl Electrochem, 38,1375–1383, 2008.
[44] XIN ShiGang , LE Jun , SONG LiXin, The Composition and Hardness of the Coating Containing Zirconia Produced by Micro-Arc Oxidation on Aluminium Alloy, Key Engineering Materials Vols. 512-515,1082-1088,2012.
[45] Ping Wang, Daoxin Liu, Jianping Li, Yongchun Guo,Zhong Yang,Effect of Yttrium Ion on YSZ-Al2O3 Composite Coating Formed by PEO on a Cast Al-Si-Cu-Ni Alloy Materials Science Forum Vol. 765,668-672,2013.
[46] Mingqi Tang, Weiping Li, Huicong Liu, Liqun Zhu, Preparation Al2O3/ZrO2 composite coating in an alkaline phosphate electrolyte containing K2ZrF6 on aluminum alloy by microarc oxidation, Applied Surface Science 258, 5869– 5875,2012.
[47]張欣盟, 陳東方, 鞏春志, 楊士勤, 田修波,添加K2ZrF6 對LY12 鋁合金微弧氧化膜層結構調製及隔熱性能影響, 無機材料學報,第25卷,第8期,2010.
[48] Li Wang, Li Chen, Zongcheng Yan, Honglin Wang, Jiazhi Peng,The influence of additives on the stability behavior of electrolyte, discharges and PEO films characteristics, Journal of Alloys and Compounds 493 ,445–452, 2010.
[49]Mohannad M.S. Al Bosta , Keng-Jeng Ma, Hsi-Hsin Chien,The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy, Infrared Physics & Technology 60,323–334,2013.
[50劉榮明,郭鋒,李鵬飛, 電壓對鋁合金微弧氧化陶瓷層形成的影響, 材料熱處理學報, 第29卷,第1期,2008.
[51]彭光懷,郭雪鋒,方玲,韓寶軍,張小聯, 負脈衝電壓對A356鋁合金雙脈衝微弧氧化膜組織與耐蝕性的影響,表面技術,第39卷,第2期,2010.
[52]蔡啟舟,劉峰,嚴青松,羅強,鎂合金微弧氧化Y2O3‐ZrO2‐MgO膜製備及性能, 華中科技大學學報,2011.
[53] Wenbin Xue, Zhiwei Deng, Yonchun Lai, and Ruyi Chen,Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy, J. Am. Ceram. Soc., 81 ,[5], 1365–68 ,1998.
[54]Yuanyuan Yan, Yong Han,Juanjuan Huang, Formation of Al2O3–ZrO2 composite coating on zirconium by micro-arc oxidation, Scripta Materialia 59,203–206, 2008.
[55] Yingliang Cheng , Fan Wu, E. Matykina , P. Skeldon , G.E. Thompson,The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2, Corrosion Science 59, 307–315, 2012.
[56] Weiyi Mu, Yong Han,Characterization and properties of the MgF2/ZrO2 composite coatings on magnesium prepared by micro-arc oxidation, Surface & Coatings Technology 202 ,4278–4284, 2008.
[57]陳永錄,以微弧氧化法於AZ91D鎂合金上鍍製矽酸鹽及鋯酸鹽氧化膜之特性分析與腐蝕行為,2014.

QR CODE