簡易檢索 / 詳目顯示

研究生: 何彥儀
Yen-Yi Ho
論文名稱: 具烷基之線性共軛芳香環分子合成與光物理之研究
Synthesis and Photophysical Properties of Linear Conjugated Aromatic Rings with Alkyl Groups
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 鄭智嘉
Chih-Chia Cheng
許智偉
Chih-Wei Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 129
中文關鍵詞: 大斯托克斯位移鈴木反應光物理
外文關鍵詞: Large Stokes shifts, Suzuki Reaction, Photophysical Property
相關次數: 點閱:217下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本實驗室先期研究開發出一系列新的線型共軛分子1,4-二芳基萘、1,4-二芳基蒽,其中1,4-二(2,2’-聯噻吩-5-基)萘,吸收波長357~367nm、放射波長487~497nm、斯托克斯位移130~138nm;1,4-二(2,2’-聯噻吩-5-基)蒽,吸收波長405~412nm、放射波長506~539nm、斯托克斯位移100~128nm,這些分子雖然具有不錯的光物理性質,但在連接多個芳香環後,溶解度變差以至無法繼續合成更多之共軛單元。本研究結合先期研究系列化合物的特徵,開發出一系列新的線型共軛分子,引入正己基增加骨架溶解度,並探討烷基鄰近及遠離中心骨架芳香環的光物理性質。
研究會分成兩個部分:直線延伸3個共軛芳香環 TcNTc,直線延伸五個共軛芳香環,分別是TTcNTcT、PTcNTcP 和烷基遠離中心骨架芳香環 TcTNTTc。蒽有較好垂直的共軛性,故合成TcATc,再直線延伸五個共軛芳香環TcTATTc,以上都會與先前研究探討分子構型以及光物理性質。


In our previous research, many conjugated molecules of 1,4-diarylanthracenes and 1,4-diarylnaphthalene have been synthesized, among which 1,4-di([2,2'-bithiophen]-5-yl)naphthalene, absorption spectra show the absorption in the range of 357~367 nm, while the fluorescence spectra show the emission in the range of 487~497 nm and the Stokes shift is about 130~138 nm. The conjugation of anthracene is better than naphthalene, which has significant bathochromic shifts in both absorption and fluorescence.
Preliminary study has found that the possibility of extending the aromatic ring is limited by poor solubility. To solve this problem, we further synthesize a new type of nonpolar large-Stokes-Shift molecules containing the cores of 1,4-di(2,2’-bithiophene-5-yl)-anthracene with n-hexyl group, which is a vital solution to improve solubility.
The study was divided into two parts: First, TcNTc will be synthesized, and to improve ℼ-conjugation by the lateral aromatic rings, TTcNTcT, PTcNTcP will be synthesized respectively. TcTNTTc with an alkyl group away from the central skeleton aromatic ring has a good conjugation will be a comparison. Then, TcATc, and the extending five conjugated aromatic ring TcTATTc will also be synthesized. Finally six target compounds will measure their absorption spectrum, fluorescence spectrum, fluorescence quantum yield and extinction coefficient. We will discuss the molecular configuration and photophysical properties with previous studies.

目錄 摘要 I Abstract II 目錄 III 表目錄 V 流程圖目錄 VI 圖目錄 VII 附錄目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 有機發光二極體(OLED)簡介 2 1-3 蒽衍生物的應用 4 1-4 Jablonski 能階 7 1-5 文獻回顧 9 1-5-1 二噻吩(BT)與相關結構之文獻 9 1-5-2 烷基位置影響旋轉屏障 11 1-5-3 分子平面性影響最大吸收波長與氧化電位 14 1-5-4 烷基引入有機光電材料 16 1-6 研究動機 20 第二章 實驗 22 2-1 實驗器材與儀器 22 2-2 實驗原理 23 2-3 儀器原理 24 2-4 儀器量測方法 25 2-4-1紫外光-可見光分光光譜儀之量測方法 25 2-4-2螢光光譜儀之量測方法 26 2-4-3消光係數之量測方法 27 2-4-4螢光量子產率之量測方法 28 2-5 實驗用藥品與溶劑 30 2-5-1實驗用藥品 30 2-5-2實驗用溶劑 31 2-6 化合物結構、分子式及分子量 32 2-7 實驗流程圖 35 2-8 化合物合成步驟 38 第三章 結果與討論 48 3-1 化合物於溶液中光物理研究 48 3-1-1 萘環系統之光物理研究 48 3-1-2 蒽環系統之光物理研究 57 3-1-3 各化合物溶於Dichloromethane 光物理性質比較 61 3-1-4 中心蒽環光氧化討論 67 3-2 各化合物消光係數 71 3-3 螢光量子產率 72 3-4 理論計算 74 第四章 結論 75 4-1 結論 75 4-2 未來展望 77 第五章 參考文獻 78

1 Oniwa, K. et al.Single crystal biphenyl end-capped furan-incorporated oligomers: influence of unusual packing structure on carrier mobility and luminescence. Journal of Materials Chemistry C 1 (26) (2013).
2 Wu*, C.-G.Dye-Sensitized Solar Cells. Journal of Engineering 25(1), 15-26.
3 Geffroy, B., le Roy, P. & Prat, C.Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International 55 (6), 572-582 (2006).
4 A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R, H. F. & Greenham, N. C.Light-Emitting Diodes Based on Conwgated Polymers. Nature (1990).
5 Durso, M. et al.Synthesis by MW-assisted direct arylation, side-arms driven self-assembly and functional properties of 9,10-dithienylanthracene orthogonal materials. Tetrahedron 70 (36), 6222-6228 (2014).
6 Wang, C. et al.Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and Their Applications in Organic Field-Effect Transistors. Chemistry of Materials 21 (13), 2840-2845 (2009).
7 Tarkuç, S., Eelkema, R. & Grozema, F. C.The relationship between molecular structure and electronic properties in dicyanovinyl substituted acceptor-donor-acceptor chromophores. Tetrahedron 73 (33), 4994-5004 (2017).
8 Slodek, A. et al.Highly Luminescence Anthracene Derivatives as Promising Materials for OLED Applications. European Journal of Organic Chemistry 2016 (23), 4020-4031 (2016).
9 Balasaravanan, R. & Siva, A.Synthesis, characterization and aggregation induced emission properties of anthracene based conjugated molecules. New Journal of Chemistry 40 (6), 5099-5106 (2016).
10 Tominaga, M., Nishino, K., Morisaki, Y. & Chujo, Y.Synthesis, characterization, and optoelectronic study of three biaryl-fused closo - o -carboranes and their nido -[C 2 B 9 ] − species. Journal of Organometallic Chemistry 798, 165-170 (2015).
11 Paul F. van Hutten, R. E. G., Jan K. Herrema, and Georges Hadziioannou*.Structure of Thiophene-Based Regioregular Polymers and Block Copolymers and Its Influence on Luminescence Spectra. Journal of Physical Chemistry (1995).
12 Amer, A. et al.Studies of Some Hindered 2,2′-Bithienyls and 3,3′-Bridged 2,2′-Bithienyls with Special Reference to Their Uv Spectra and Oxidation Potentials. Phosphorus, Sulfur, and Silicon and the Related Elements 42 (1-2), 63-71 (2006).
13 Hsiu-Yi Yang, Yung-Sheng Yen, Ying-Chan Hsu, Hsien-Hsin Chou & Lin*, a. J. T.Organic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]thiophene Moiety for Efficient Dye-Sensitized Solar Cells. Organic Letters 12, 16-19 (2010).
14 Revoju, S., Biswas, S., Eliasson, B. & Sharma, G. D.Phenothiazine-based small molecules for bulk heterojunction organic solar cells; variation of side-chain polarity and length of conjugated system. Organic Electronics 65, 232-242 (2019).
15 Miyaura, N., Yanagi, T. & Suzuki, A.The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases. Synthetic Communications 11 (7), 513-519 (2006).
16 Matos, K. & Soderquist, J. A.Alkylboranes in the Suzuki−Miyaura Coupling: Stereochemical and Mechanistic Studies. The Journal of Organic Chemistry 63 (3), 461-470 (1998).
17 Ataualpa A. C. Braga, ‡ Nelson H. Morgon,‡ Gregori Ujaque,*,† and & Feliu Maseras*, §.Computational Characterization of the Role of the Base in the Suzuki-Miyaura Cross-Coupling Reaction. Journal of the American Chemical Society 127(25) (2005).
18 Ho, J.-H., Chen, Y.-H., Chou, L.-T., Lai, P.-W. & Chen, P.-S.The improvement of π-conjugation by the lateral benzene of anthracene and naphthalene. Tetrahedron Letters 55 (42), 5727-5731 (2014).
19 Chung, Y. H. Synthesis and Photophysics of Conjugated Molecules with 1,4-Di(thien-2-yl)anthracene Skeleton, (2017).
20 Wang, Y. L. Synthesis and Photophysics of Conjugated Molecules with 1,4-Di(thien-2-yl)naphthalene Skeleton (2017).
21 Jack Saltiel, D. E. T., and Alan Sykes.Role of Higher Triplet States in the Anthracene-Sensitized Photoisomerization of Stilbene and 2,4-Hexadiene. J. Am. Chem. Soc 105, 2530-2538 (1983).
22 Xia, P. et al.On the efficacy of anthracene isomers for triplet transmission from CdSe nanocrystals. Chem Commun (Camb) 53 (7), 1241-1244 (2017).
23 Kobin, B., Grubert, L., Blumstengel, S., Henneberger, F. & Hecht, S.Vacuum-processable ladder-type oligophenylenes for organic–inorganic hybrid structures: synthesis, optical and electrochemical properties upon increasing planarization as well as thin film growth. Journal of Materials Chemistry 22 (10) (2012).

QR CODE