簡易檢索 / 詳目顯示

研究生: 劉容瑄
Jung-Hsuan Liu
論文名稱: 以射頻磁控濺鍍製備氧化鈰薄膜於油水分離製程之研究
Research on the Preparation of Cerium Oxide Thin Films for Oil-Water Separation Process Using Radio Frequency Magnetron Sputtering
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 陳彥友
Yen-Yu Chen
楊永欽
Yung-Chin Yang
曾修暘
Hsiu-Yang Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 射頻磁控濺鍍氧化鈰油水分離疏水親油薄膜
外文關鍵詞: RF magnetron sputtering, cerium oxide, oil-water separation, hydrophobic oleophilic thin film
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用射頻磁控濺鍍設備(RF Magnetron Sputtering),並分為純氬氣與通入6.2 sccm與12.5 sccm氧氣氣氛,搭配CeO2靶材以功率100 W沉積氧化鈰薄膜於矽晶片、304不銹鋼塊材表面與304不銹鋼網上。首先進行薄膜材料性質的研究,以多功能高功率X光繞射儀(XRD)進行膜層結晶結構分析;場發射掃描式電子顯微鏡(FE-SEM)觀察表面形貌與橫截面;原子力顯微鏡(Atomic Force Microscope)分析表面立體形貌與粗糙度;奈米壓痕機械性質分析儀(Nanoindenter)量測表面硬度;透過刮痕試驗(Scratch Test)以觀察其薄膜剝落之臨界荷重(Lc)數值,評估薄膜與被鍍材料間的結合能力;最後進行應用方面之測試,利用水接觸角量測儀(Water Contact Angle)測得薄膜的疏水親油性能及表面能,最後將原材與鍍膜後之濾網放置於過濾設備中,進行不同油類與海水的油水分離測試,驗證氧化鈰薄膜有效分離油與水性質。
實驗結果顯示在低氧分壓下呈現氧化不完全的Ce4O7,在製程中通入氧氣可使氧化鈰氧化更完全接近CeO2;於表面與立體形貌觀察,在進行鍍膜時,如果氧氣流量增加,氧化鈰靶材內的氧離子解離會使靶材轉為離子態,進而影響鍍率,導致鍍膜速率與最初的氧化態靶材不同,因此有較薄的膜層厚度與較低的表面粗糙度值;氧化鈰薄膜表面硬度與原材304不銹鋼相比,有更高的硬度因此能保護基材,並且無論有無通入氧氣進行鍍膜,皆沒有太大影響;薄膜臨界荷重數值在L-6.2鍍膜參數中有最高的結果值,證實經濺鍍後的氧化鈰薄膜與基材有良好的附著性;氧化鈰薄膜能提升矽晶片與304不銹鋼基材的水滴接觸角,經過時效測試後極性力更接近0 dyne,同時有更好的親油效果,且不受基材所影響;最後將鍍製於304不銹鋼網氧化鈰薄膜,進行水與海水添加機油、廢油與柴油之油水分離測試,顯示鍍膜後材料與原材相比有更好的分離效能,證實氧化鈰沉積於基材上能提升疏水親油特性。


This study utilized RF Magnetron Sputtering equipment and divided the process into pure argon atmosphere and atmospheres with 6.2 sccm and 12.5 sccm of oxygen flow. CeO2 target material was used in conjunction with a power of 100 W to deposit cerium oxide (CeO2) films on silicon wafers, 304 stainless steel bulk material, and 304 stainless steel mesh. Initially, the research focused on the material properties of the films. The crystalline structure of the films was analyzed using a multifunctional high-power X-ray diffractometer (XRD). The surface morphology and cross-section were observed using a field emission scanning electron microscope (FE-SEM). An Atomic Force Microscope (AFM) was used for analyzing surface topography and roughness. The surface hardness was measured using a nanoindenter. The scratch test was employed to observe the critical load (Lc) for film delamination and evaluate the bonding ability between the film and the substrate. Subsequently, application-oriented tests were conducted. A water contact angle measurement instrument was utilized to determine the hydrophobic and oleophilic properties of the film, as well as surface energy. Furthermore, the original material and the coated filter were subjected to oil-water separation tests with various types of oils and seawater to verify the film's effective separation of oil and water properties.
Experimental results indicated that under low oxygen partial pressure, a partially oxidized Ce4O7 phase was present. The introduction of oxygen during the process led to more complete oxidation of cerium oxide, approaching CeO2. Surface and three-dimensional morphology observations revealed that increasing the oxygen flow during film deposition resulted in ionization of oxygen ions within the cerium oxide target. This affected the deposition rate, leading to thinner film thickness and lower surface roughness values due to the altered initial oxidized state of the target material. Comparatively, the surface hardness of the cerium oxide film was higher than that of the original 304 stainless steel, indicating improved substrate protection. The film's critical load value was highest in the L-6.2 film deposition condition, confirming strong adhesion between the sputtered cerium oxide film and the substrate. The cerium oxide film enhanced the water contact angle of silicon wafers and 304 stainless steel substrates. After aging testing, the polarity force approached 0 dyne, demonstrating enhanced hydrophobic effects and being unaffected by the substrate. Lastly, the stainless steel mesh coated with cerium oxide film underwent oil-water separation tests with water, seawater, machine oil, waste oil, and diesel oil. The results showed better separation performance of the coated material compared to the original material, confirming that cerium oxide deposition on the substrate improved its hydrophobic and oleophilic characteristics.

第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 二氧化鈰的材料性質及應用 5 2.1.1 二氧化鈰的晶體結構 5 2.1.2 二氧化鈰的氧化與還原 6 2.1.3 二氧化鈰的應用 7 2.2 表面接觸角介紹 11 2.2.1 Wenzel模型 12 2.2.2 Cassie-Baxter 模型 13 2.2.3 極性力與非極性力 14 2.2.4 表面自由能(Surface Free Energy) 15 2.3 油水混合物之過濾方式 17 2.3.1 傳統油水混合分離方法 17 2.3.2 利用濾網過濾油水混合物 19 2.4 腐蝕現象 23 2.4.1 電化學反應 23 2.4.2 腐蝕速率 25 2.4.3 腐蝕的形態 26 2.5 真空濺鍍 32 2.5.1 真空濺鍍系統 33 2.5.2 電漿應用於鍍膜中 38 2.5.3 薄膜沉積原理 39 第三章 實驗方法 41 3.1 實驗設計 41 3.2 實驗材料與耗材 43 3.3 實驗步驟 44 3.4 分析儀器 48 3.4.1 X光繞射儀(X-Ray Diffraction, XRD) 48 3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 49 3.4.3 原子力顯微鏡(Atomic Force Microscope, AFM) 50 3.4.4 奈米壓痕機械性質分析儀(Nanoindenter) 51 3.4.5 刮痕試驗儀(Scratch Tester) 52 3.4.6 接觸角量測儀(Contact Angle Meter) 53 3.4.7 恆電位儀(Potentiostat) 54 第四章 結果與討論 55 4.1 薄膜晶體結構分析 55 4.2 顯微組織與成分分析 58 4.3 表面形貌與粗糙度分析 60 4.4 硬度分析 62 4.5 刮痕試驗 64 4.6 表面親疏水性質測試 65 4.7 表面親疏油性質測試 77 4.8 油水分離測試 82 4.9 薄膜抗腐蝕性 93 第五章 結論 96 第六章 未來展望 98 參考文獻 99

[1] Estimates of Oil Entering the Marine Environment from Sea-based Activities | GESAMP, (n.d.). http://www.gesamp.org/publications/estimates-of-oil-entering-the-marine-environment-from-sea-based-activities (accessed July18, 2023).
[2] Maritime Environment and Oil spillage: Legality and Regimes - Maritime Study Forum, (n.d.). https://www.maritimestudyforum.org/maritime-environment-and-oil-spillage-legality-and-regimes/ (accessed July18, 2023).
[3] Pollution - Our Shared Seas, (n.d.). https://oursharedseas.com/threats/threats-pollution/ (accessed July18, 2023).
[4] 西子灣漏油仍未解 台灣特有瀕絕保育類珊瑚遭威脅 | 地球公民基金會, (n.d.). https://www.cet-taiwan.org/node/2885 (accessed July18, 2023).
[5] 竹北翁厝圳遭排油汙 吸油棉片釀二次汙染 | 好房網News, (n.d.). https://news.housefun.com.tw/news/article/148578365898.html (accessed July18, 2023).
[6] 3M工安防護-吸油棉、吸液棉、攔油索、緊急洩漏處理 - 三貿工業用品股份有限公司, (n.d.). https://www.23362929.com.tw/product-detail-375076.html (accessed July18, 2023).
[7] 綠島港區現油花 海巡搶救阻浩劫 - 生活 - 自由時報電子報, (n.d.). https://news.ltn.com.tw/news/life/breakingnews/3015852 (accessed July18, 2023).
[8] 截油槽清洗步驟–緯霖除油, (n.d.). https://www.wlin.com.tw/empty_10846.php (accessed July18, 2023).
[9] Amazon.com: Cerium Oxide Glass Polishing Compound - 1 Lb (Pack of 1) : 汽車, (n.d.). https://www.amazon.com/-/zh_TW/AX-AY-ABHI-49882/dp/B009XUA9ZY (accessed July18, 2023).
[10] Z.L.Wang, X.Feng, Polyhedral Shapes of CeO2 Nanoparticles, J. Phys. Chem. B. 107 (2003) 13563–13566.
[11] J.P.Y.Tan, H.R.Tan, C.Boothroyd, Y.L.Foo, C.BinHe, M.Lin, Three-dimensional structure of CeO2 nanocrystals, J. Phys. Chem. C. 115 (2011) 3544–3551.
[12] Y.Zhang, S.Bals, G.VanTendeloo, Understanding CeO2-Based Nanostructures through Advanced Electron Microscopy in 2D and 3D, Part. Part. Syst. Charact. 36 (2019) 1800287.
[13] K.Wu, L.D.Sun, C.H.Yan, Recent Progress in Well-Controlled Synthesis of Ceria-Based Nanocatalysts towards Enhanced Catalytic Performance, Adv. Energy Mater. 6 (2016) 1600501.
[14] T.Montini, M.Melchionna, M.Monai, P.Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chem. Rev. 116 (2016) 5987–6041.
[15] K.Reinhardt, H.Winkler, Cerium Mischmetal, Cerium Alloys, and Cerium Compounds, Ullmann’s Encycl. Ind. Chem. (2000).
[16] T.Onodera, H.Takahashi, S.Nomura, First-principles molecular dynamics investigation of ceria/silica sliding interface toward functional materials design for chemical mechanical polishing process, Appl. Surf. Sci. 530 (2020) 147259.
[17] T.S.Sreeremya, M.Prabhakaran, S.Ghosh, Tailoring the surface properties of cerium oxide nanoabrasives through morphology control for glass CMP, RSC Adv. 5 (2015) 84056–84065.
[18] T.Montini, M.Melchionna, M.Monai, P.Fornasiero, Fundamentals and Catalytic Applications of CeO2-Based Materials, Chem. Rev. 116 (2016) 5987–6041.
[19] R.Mi, D.Li, Z.Hu, R.T.Yang, Morphology Effects of CeO2Nanomaterials on the Catalytic Combustion of Toluene: A Combined Kinetics and Diffuse Reflectance Infrared Fourier Transform Spectroscopy Study, ACS Catal. 11 (2021) 7876–7889.
[20] 劉容瑄、陳松郁、陳禮舜、郭俞麟, 以RF磁控濺鍍製備ZrO2與CeO2薄膜之疏水特性與光學性質比較, 2022台灣鍍膜科技協會年會(TACT 2022) 暨國科會專題計畫研究成果發表會論文集. (2022).
[21] J. anWang, L. fangChen, C. lieLi, Roles of cerium oxide and the reducibility and recoverability of the surface oxygen species in the CeO2/MgAl2O4 catalysts, J. Mol. Catal. A Chem. 139 (1999) 315–323.
[22] J.Xu, G.Lu, Y.Guo, Y.Guo, X.Q.Gong, A highly effective catalyst of Co- CeO2 for the oxidation of diesel soot: The excellent NO oxidation activity and NOx storage capacity, Appl. Catal. A Gen. 535 (2017) 1–8.
[23] J.Cao, S.Rohani, W.Liu, H.Liu, Z.Lu, H.Wu, L.Jiang, M.Kong, Q.Liu, X.Yao, Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NOx removal from co-incineration flue gas of domestic waste and municipal sludge, J. Colloid Interface Sci. 610 (2022) 463–473.
[24] J.Emsley, Nature’s building blocks : everything you need to know about the elements, Oxford Univ. Press. (2011) 699. https://global.oup.com/academic/product/natures-building-blocks-9780199605637 (accessed July19, 2023).
[25] Y.C.Jung, B.Bhushan, Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir. 24 (2008) 6262–6269.
[26] B.Bhushan, Y.C.Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction, Prog. Mater. Sci. 56 (2011) 1–108.
[27] N.F.Himma, N.Prasetya, S.Anisah, I.G.Wenten, Superhydrophobic membrane: progress in preparation and its separation properties, Rev. Chem. Eng. 35 (2019) 211–
[28] Surface Free Energy & Wettability – SIMC, (n.d.). https://simc.co.in/products/surface-free-energy-wettability/ (accessed July19, 2023).
[29] A.Lafuma, D.Quéré, Superhydrophobic states, Nat. Mater. 2003 27. 2 (2003) 457–460.
[30] C.H.Kung, P.K.Sow, B.Zahiri, W.Mérida, Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities, Adv. Mater. Interfaces. 6 (2019) 1900839.
[31] C.Dorrer, J.Rühe, Some thoughts on superhydrophobic wetting, Soft Matter. 5 (2008)
[32] X.Feng, L.Jiang, Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater. 18 (2006) 3063–3078.
[33] V.Kalyanaraman, S.V.Naveen, N.Mohana, R.M.Balaje, K.R.Navaneethakrishnan, B.Brabu, S.S.Murugan, T.S.Kumaravel, Biocompatibility studies on cerium oxide nanoparticles – combined study for local effects, systemic toxicity and genotoxicity via implantation route, Toxicol. Res. (Camb). 8 (2019) 25–37.
[34] Lesson summary: Water and life (article) | Khan Academy, (n.d.). https://www.khanacademy.org/science/ap-biology/chemistry-of-life/structure-of-water-and-hydrogen-bonding/a/hs-water-and-life-review (accessed July19, 2023).
[35] response.restoration.noaa.gov | Our role is stewardship; our product is science., (n.d.). https://response.restoration.noaa.gov/ (accessed July19, 2023).
[36] Why Oil and Water Don’t Mix, (n.d.). https://www.thoughtco.com/why-oil-and-water-dont-mix-609193 (accessed July19, 2023).
[37] Z.Peršin, K.Stana-Kleinschek, M.Sfiligoj-Smole, T.Kre, V.Ribitsch, Determining the Surface Free Energy of Cellulose Materials with the Powder Contact Angle Method, 74 (2004) 55–62.
[38] D.K.Owens, R.C.Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747.
[39] Surface Free Energy | Measurements, (n.d.). https://www.biolinscientific.com/measurements/surface-free-energy (accessed July19, 2023).
[40] Z.Peršin, K.Stana-Kleinschek, M.Sfiligoj-Smole, T.Kre, V.Ribitsch, Determining the Surface Free Energy of Cellulose Materials with the Powder Contact Angle Method, 74 (2004) 55–62.
[41] F.Awaja, M.Gilbert, G.Kelly, B.Fox, P.J.Pigram, Adhesion of polymers, Prog. Polym. Sci. 34 (2009) 948–968.
[42] 片狀吸油棉 - 默利有限公司, (n.d.). https://www.mohlih.tw/?.p=HjrH&.f=x001&.qio=P20100113140132437&.__id=P20100126142012203 (accessed July19, 2023).
[43] Superhydrophobic Polypropylene Functionalized with Nanoparticles for Efficient Fast Static and Dynamic Separation of Spilled Oil from Water - Baig - 2019 - Global Challenges - Wiley Online Library, (n.d.).
[44] P.K.Yegya Raman, A.Jain, S.Ramkumar, Oil absorption and desorption by polypropylene fibers, Tappi J. 16 (2017) 507–513.
[45] 土壤與地下水技術資源平台, (n.d.). https://sgrr.epa.gov.tw/ (accessed July19, 2023).
[46] 油脂截留槽原理 - YouTube, (n.d.). https://www.youtube.com/watch?v=RiWCbg3R2-U&ab_channel=ERIC雅麗家 (accessed July19, 2023).
[47] Basic Principle and Methodology of Simple Distillation Process : Pharmaguideline, (n.d.). https://www.pharmaguideline.com/2007/02/distillation-basic-principle-and-mehodology-of-simple-distillaion.html (accessed July19, 2023).
[48] Z.Xue, Y.Cao, N.Liu, L.Feng, L.Jiang, Special wettable materials for oil/water separation, J. Mater. Chem. A. 2 (2014) 2445–2460.
[49] L.Feng, Z.Zhang, Z.Mai, Y.Ma, B.Liu, L.Jiang, D.Zhu, A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water, Angew. Chemie Int. Ed. 43 (2004) 2012–2014.
[50] Y.Jiang, C.Liu, Y.Li, A.Huang, Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation, J. Memb. Sci. 587 (2019) 117177.
[51] L.Zhao, Z.Du, X.Tai, Y.Ma, One-step facile fabrication of hydrophobic SiO2 coated super-hydrophobic/super-oleophilic mesh via an improved Stöber method to efficient oil/water separation, Colloids Surfaces A Physicochem. Eng. Asp. 623 (2021) 126404.
[52] H.Wang, X.Hu, Z.Ke, C.Z.Du, L.Zheng, C.Wang, Z.Yuan, Review: Porous Metal Filters and Membranes for Oil–Water Separation, Nanoscale Res. Lett. 13 (2018) 1–14.
[53] S.Yuan, C.Chen, A.Raza, R.Song, T.J.Zhang, S.O.Pehkonen, B.Liang, Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation, Chem. Eng. J. 328 (2017) 497–510.
[54] R.H.Kollarigowda, H.M.Bhyrappa, G.Cheng, Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation, ACS Appl. Bio Mater. 2 (2019) 4249–4257.
[55] 莊東漢, 電化學原理與腐蝕研究上之應用, 防蝕工程. 4 (1990) 14~28.
[56] M.C.Gonҫ alves, M.Fernanda, Materials for construction and civil engineering: Science, processing, and design, Mater. Constr. Civ. Eng. Sci. Process. Des. (2015) 1–902.
[57] D.Jones, Principles and Prevention of Corrosion, 1996.
[58] M.C.Gonc¸alves, Materials for Construction and Civil Engineering, 2015.
[59] 蘇清森, 真空技術精華Vacuum Technology, 2009.
[60] 謝汎鈞、林炳宏、呂日清, 真空幫浦抽氣性能檢測技術於半導體及光電產業之應用, 2011.
[61] 渦輪分子真空幫浦 - Leybold, (n.d.). https://www.leybold.com/zh-tw/products/vacuum-pumps/turbomolecular-vacuum-pumps (accessed July19, 2023).
[62] Cryopumps|Fundamentals of Vacuum Pumps (High Vacuum)|How to|ULVAC SHOWCASE, (n.d.). https://showcase.ulvac.co.jp/en/how-to/product-knowledge02/cryo-pump.html (accessed July19, 2023).
[63] L.P.Marianna Bellardita, Agatino Di Paola, Sedat Yurdakal, Heterogeneous Photocatalysis, 2019.
[64] K.Wasa, Handbook of Sputter Deposition Technology, 2012.
[65] D.L.Smith, Thin Film Deposition: Principles and Practice, 1995.
[66] 曾泰銓, 濺鍍鈀與氧化鈀薄膜應用於奈米裂隙電極製作研究, 2007.
[67] S.J.Neelesh K. Jain, Mayur S. Sawant, Sagar H. Nikam, Metal Deposition: Plasma-Based Processes, 2016.
[68] S.Swann, Magnetron sputtering, Phys. Technol. 19 (1988) 67.
[69] I.P.P.B.B.L.H.J.E.Greene, Microstructural evolution during film growth, 2003.
[70] 孫亞賢、劉峻佑、簡士偉, 低掠角小角度 X 光散射原理及在高分子薄膜結構之應用, 科儀新知. 34 (2013).
[71] 林麗娟, X光繞射原理及其應用, 工業材料. 86 (1994) 100.
[72] D8 DISCOVER Family | Bruker, (n.d.). https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/d8-discover-family.html (accessed July19, 2023).
[73] JSM-7900F Schottky Field Emission Scanning Electron Microscope | Products | JEOL Ltd., (n.d.). https://www.jeol.com/products/scientific/sem/JSM-7900F.php (accessed July19, 2023).
[74] Electron Microscopy- Electron Source - Advancing Materials, (n.d.). https://www.thermofisher.com/blog/materials/electron-source-fundamentals/ (accessed July19, 2023).
[75] C.W.Yangjie Wei, Zaili Dong, Method for Simultaneously Obtaining Surface Elasticity Image and Accurate Height Image Using Contact Mode AFM, 2011.
[76] Dimension Icon AFM | Bruker, (n.d.). https://www.bruker.com/en/products-and-solutions/microscopes/materials-afm/dimension-icon-afm.html (accessed July19, 2023).
[77] AFM Bruker Dimension Icon, AFM Veeco Dimension IV | FZU, (n.d.). https://www.fzu.cz/en/services/equipment-and-technologies/experimental-equipments/afm-bruker-dimension-icon-afm-veeco (accessed July19, 2023).
[78] 奈米壓痕機械性質分析儀 (Nanoindenter), (n.d.). https://sppic.ntust.edu.tw/p/404-1058-66359.php?Lang=zh-tw (accessed July19, 2023).
[79] Hysitron TI 980 奈米壓痕儀 | Bruker, (n.d.). https://www.bruker.com/zh/products-and-solutions/test-and-measurement/nanomechanical-test-systems/hysitron-ti-980-nanoindenter.html (accessed July19, 2023).
[80] B.Lenz, H.Hasselbruch, H.Großmann, A.Mehner, Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings, Surf. Coatings Technol. 393 (2020) 125764.
[81] Revetest® Scratch Tester: RST3 | Anton Paar, (n.d.). https://www.anton-paar.com/corp-en/products/details/revetestr-scratch-tester-rst3/ (accessed July19, 2023).
[82] 儀器系列 - 北極光科技, (n.d.). https://aubotech.com/儀器系列/ (accessed July19, 2023).
[83] Y.Jiang, J.B.Adams, M.VanSchilfgaarde, Density-functional calculation of CeO 2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities, J. Chem. Phys. 123 (2005) 64701.
[84] Y.L.Kuo, Y.S.Chen, C.Lee, Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering: The O2/Ar flow ratio effect, J. Eur. Ceram. Soc. 31 (2011) 3127–3135.
[85] S.N.Jacobsen, L.D.Madsen, U.Helmersson, Epitaxial cerium oxide buffer layers and YBa2Cu3O7−δ thin films for microwave device applications, J. Mater. Res. 14 (1999) 2385–2393.
[86] C.Mansilla, Structure, microstructure and optical properties of cerium oxide thin films prepared by electron beam evaporation assisted with ion beams, Solid State Sci. 11 (2009) 1456–1464.
[87] D.Quã, Rough ideas on wetting, Physica A. 313 (2002) 32–46. www.elsevier.com/locate/physa (accessed July19, 2023).
[88] S.Torbrügge, M.Reichling, A.Ishiyama, S.Morita, Ó.Custance, Evidence of subsurface oxygen vacancy ordering on reduced CeO2 (111), Phys. Rev. Lett. 99 (2007).
[89] Q.Lv, S.Zhang, S.Deng, Y.Xu, G.Li, Q.Li, Y.Jin, Transparent and water repellent ceria film grown by atomic layer deposition, Surf. Coatings Technol. 320 (2017) 190–195.
[90] G.Azimi, R.Dhiman, H.M.Kwon, A.T.Paxson, K.K.Varanasi, Hydrophobicity of rare-earth oxide ceramics, Nat. Mater. 2013 124. 12 (2013) 315–320.
[91] J.J.Roa, E.Gilioli, F.Bissoli, F.Pattini, S.Rampino, X.G.Capdevila, M.Segarra, Study of the mechanical properties of CeO2 layers with the nanoindentation technique, Thin Solid Films. 518 (2009) 227–232.
[92] W.Zhang, X.Wang, Y.Hu, S.Wang, Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel, Int. J. Mach. Tools Manuf. 130–131 (2018) 36–48.
[93] L.T.Huang, T.F.Yeh, Y.L.Kuo, P.C.Chen, C.M.Chen, Effect of surfactant and budesonide on the pulmonary distribution of fluorescent dye in mice, Pediatr. Neonatol. 56 (2015) 19–24.
[94] Rochelle M. Cornell, S.Udo, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2006.
[95] L.Preserve, L.Blaney, Magnetite (Fe3O4): Properties, Synthesis, and Applications, (n.d.).
[96] R.S.Zambare, P.R.Nemade, Ionic liquid-modified graphene oxide sponge for hexavalent chromium removal from water, Colloids Surfaces A Physicochem. Eng. Asp. 609 (2021) 125657.

無法下載圖示 全文公開日期 2028/08/19 (校內網路)
全文公開日期 2028/08/19 (校外網路)
全文公開日期 2028/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE