簡易檢索 / 詳目顯示

研究生: 郭玉光
Yu-Guang Guo
論文名稱: 金修飾對鉑觸媒電催化二甲氧基甲烷氧化反應的影響
Effect of Gold Modification on Platinum Catalyst Electrocatalytic Oxidation of Dimethoxymethane
指導教授: 林昇佃
Shawn D.Lin
林修正
Andrew S.Lin
口試委員: 蘇威年
WEI-NIEN SU
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 144
中文關鍵詞: 金鉑觸媒二甲氧基甲烷氧化反應甲醇氧化反應酸性燃料電池
外文關鍵詞: Gold-platinum catalyst, dimethoxymethane oxidation reaction, methanol oxidation reaction, acid fuel cell
相關次數: 點閱:178下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討不同方法製備金鉑雙金屬觸媒對DMM氧化反應的影響,包括電化學法先鉑後金沉積在玻璃碳電極(PtAuy/GC)、商購金鉑合金圓盤電極(PtxAuy),透過化學還原法Au於商用Pt/C(Auy@Ptx/C)和共還原PtAu於碳黑(PtxAuy/C)的觸媒。XRD分析結果顯示以化學還原法製備之Auy@Ptx/C和PtxAuy/C觸媒,可獲得PtAu 合金,顆粒粒徑大小約 2~5 奈米,XPS分析結果顯示Pt會轉移部份電子到Au。在DMM氧化反應中,以單位電化學活性面積電流為基準比較,觀察到以化學還原法製得之Auy@Ptx/C觸媒,在正向氧化峰電流訊號明顯高於PtxAuy電極和PtAuy/GC觸媒,其中以Au3@Pt7/C觸媒和Au4@Pt6/C觸媒具有比商用Pt/C觸媒更高之正向氧化峰電流訊號與更低的氧化起始電位。單電池系統以Pt/C MEA測試發現0.2M DMM陽極進料條件具有較佳之放電電流,在固定的0.2 M DMM陽極進料濃度條件下,觀察到Au3@Pt7/C MEA在測試溫度55°C和75 °C下,表現與Pt/C MEA相近的表現,但Au3@Pt7/C MEA中只有Pt/C MEA 約1/3的Pt使用量,顯示Au修飾可以提升Pt/C催化DMM的氧化。


In this study,we discussed the effects of different methods for preparing gold-platinum bimetallic catalysts on the oxidation reaction of DMM。The electrochemical method was used to deposit platinum first and then gold on the glassy carbon electrode,which was named PtAuy/GC,and the commercially available gold-platinum alloy disk electrode was named PtxAuy,the catatlyst prepared by the chemical reduction method were named Auy@Ptx/C and PtxAuy/C。XRD analysis results show that Auy@Ptx/C and PtxAuy/C catalysts prepared by chemical reduction method can obtain PtAu alloy with a particle size of about 2-5 nm。XPS analysis results show that Pt will transfer some electrons to Au。In the DMM oxidation reaction,based on the current per unit electrochemical active area,it was observed that the Auy@Ptx/C
catalyst prepared by the chemical reduction method had a significantly higher peak current signal in the forward oxidation than the PtxAuy electrode and the PtAuy/GC catalyst,Au3@Pt7/C catalyst and Au4@Pt6/C catalyst have higher forward oxidation peak current signal and lower oxidation initiation potential than commercial Pt/C catalyst。The single-cell system was tested with Pt/C MEA and found that the 0.2 M DMM anode feed condition has a better discharge current,under the fixed 0.2 M DMM anode feed concentration condition,it was observed that Au3@Pt7/C MEA at the test temperature of 55°C and at 75 °C,the performance is similar to that of Pt/C MEA,but only about 1/3 of the Pt usage of Pt/C MEA in Au3@Pt7/C MEA,the result show that Au modified Pt/C can enhance the oxidation of DMM 。

摘要...................................................... I Abstract ................................................ II 誌謝 .................................................... IV 目錄 ......................................................V 圖目錄 ...................................................VIII 表目錄 ...................................................XI 1 第1 章 緒論 .............................................1 1.1 前言 ..................................................1 1.2 燃料電池................................................3 1.2.1 燃料電池種類 ......................................... 4 1.2.2 燃料電池工作原理 ..................................... 5 1.3 文獻回顧 .............................................. 8 1.3.1 直接甲醇燃料電池反應機制(DMFC) ........................ 8 1.3.2 直接二甲氧基甲烷燃料電池反應機制(DMMFC) ............... 11 1.3.3 鉑與鉑基雙金屬觸媒於燃料電池應用和二甲氧基甲烷 電池測試 .................................... ..............15 1.3.4 金鉑雙金屬製備及應用 ................................. 22 1.3.5 電脈衝沉積法製備金屬奈米顆粒 .......................... 27 1.4 研究目的 .............................................. 32 2 第2 章 研究架構與方法 .................................... 33 2.1 研究架構 .............................................. 33 2.2 實驗藥品與儀器設備 ..................................... 34 2.2.1 實驗藥品與氣體 ....................................... 34 2.2.2 實驗設備 ............................................. 35 2.3 觸媒製備方法 ........................................... 36 2.3.1 電脈衝沉積製備方法 ................................... 36 2.3.2 Pt-Au/C 雙金屬觸媒製備方法 ............................38 2.4 材料鑑定方法 ........................................... 40 2.4.1 X 光粉末繞射儀(XRD) .................................. 40 2.4.2 掃描式電子顯微鏡-能量散射光譜儀(SEM-EDS) ................41 2.4.3 X 射線光電子能譜儀(XPS)................................ 42 2.4.4 感應耦合電漿原子放射光譜儀(ICP) ........................ 44 2.5.1 循環伏安法 ........................................... .44 2.5.2 薄膜電極的製備 ........................................ 44 2.5.3 電化學活性面積計算 ................................... .45 2.5.4 二甲氧基甲烷電化學氧化(DMMOR)-CV 實驗步驟 ............... 47 2.5.5 甲醇電化學氧化(MOR)-CV 實驗步驟 .......................... 48 2.5.6 二甲氧基甲烷-RRDE 實驗步驟 .............................. 48 2.5.7 二甲氧基甲烷-單電池實驗步驟 .............................. 49 3 第3 章 結果與討論 ........................................... 51 3.1 電沉積製備PtAuy/GC 電極 ....................................51 3.1.1 電解質溶液對電沉積金屬顆粒與活性面積的影響 ................. 51 3.1.2 電沉積電位及溫度對鉑電極電化學表面活性面積的影響............. 54 3.1.3 Pt/GC、Au/GC 和PtAu/GC 電極對二甲氧基甲烷氧化 探討........................................................... 56 3.2 金鉑圓盤電極對二甲氧基甲烷氧化反應探討 ........................ 69 3.2.1 XRD 分析 ................................................. 69 3.2.2 SEM-EDS 元素分析 ......................................... 71 3.2.3 XPS 分析 ................................................. 72 3.2.4 觸媒電化學反應分析 ........................................ 75 3.3 Au@Pt/C 和PtAu/C 觸媒對二甲氧基甲烷氧化探討 ................... 80 3.3.1 XRD 分析 .................................................. 80 3.3.2 ICP 分析 .................................................. 83 3.3.3 SEM-EDS 成分分析 .......................................... 83 3.3.4 XPS 分析 .................................................. 87 3.3.5 觸媒電化學反應分析 ......................................... 92 3.4 PtAu/GC 觸媒、商購PtAu Disk、Au@Pt/C 及PtAu/C 觸媒對 甲醇氧化反應探討 ..................................................98 3.5 二甲氧基甲烷單電池性能評估 .....................................103 第4 章 結論 ..................................................... 108 參考文獻 ........................................................ 110 附錄A PtAuy/GC 觸媒和PtAu disk 電極於DMM不同圈數下峰電流 值變化 .......................................................... 115 附錄B Auy@Ptx/C 與PtxAuy/C 觸媒於DMM和甲醇不同圈數下峰電 流值變化 ........................................................ 120 附錄C PtxAuy塊狀電極於DMM RRDE 測試 .............................. 125

[1] I. E. Agency, "Key world energy statistics," 2003: IEA Washington,
DC.
[2] J. Chontanawat, L. C. Hunt, and R. Pierse, "Does energy
consumption cause economic growth?: Evidence from a systematic
study of over 100 countries," Journal of policy modeling, vol. 30,
no. 2, pp. 209-220, 2008.
[3] 衣寶廉, 燃料電池-原理與應用,五南,台灣. 2007.
[4] B. Ong, S. Kamarudin, and S. Basri, "Direct liquid fuel cells: A
review," International journal of hydrogen energy, vol. 42, no. 15,
pp. 10142-10157, 2017.
[5] J. M. Andújar and F. Segura, "Fuel cells: History and updating. A
walk along two centuries," Renewable and sustainable energy
reviews, vol. 13, no. 9, pp. 2309-2322, 2009.
[6] A. Singh, P. Baredar, H. Khare, and A. Kumar, "Fuel cell:
Fundamental, classification, application, and environmental
impact," Low Carbon Energy Supply: Trends, Technology,
Management, pp. 363-385, 2018.
[7] S. Mekhilef, R. Saidur, and A. Safari, "Comparative study of
different fuel cell technologies," Renewable and Sustainable
Energy Reviews, vol. 16, no. 1, pp. 981-989, 2012.
[8] Y. Hashimasa, T. Numata, K. Moriya, and S. Watanabe, "Study of
fuel cell structure and heating method: Development of JARI's
standard single cell," Journal of power sources, vol. 155, no. 2, pp.
182-189, 2006.
[9] G. Prakash et al., "Performance of dimethoxymethane and
trimethoxymethane in liquid-feed direct oxidation fuel cells,"
Journal of power sources, vol. 173, no. 1, pp. 102-109, 2007.
[10] Y. Zhu, H. Uchida, T. Yajima, and M. Watanabe, "Attenuated total
reflection− Fourier transform infrared study of methanol oxidation
on sputtered Pt film electrode," Langmuir, vol. 17, no. 1, pp. 146-
154, 2001.
[11] U. B. Demirci, "Direct liquid-feed fuel cells: thermodynamic and
environmental concerns," Journal of Power Sources, vol. 169, no.
2, pp. 239-246, 2007.
[12] G. Kéranguéven, E. Sibert, F. Hahn, and J.-M. Léger,
"Dimethoxymethane (DMM) electrooxidation on polycrystalline
platinum electrode in acid media," Journal of Electroanalytical
Chemistry, vol. 622, no. 2, pp. 165-172, 2008.
[13] T. Yajima, H. Uchida, and M. Watanabe, "In-situ ATR-FTIR
spectroscopic study of electro-oxidation of methanol and adsorbed
CO at Pt− Ru alloy," The Journal of Physical Chemistry B, vol.
108, no. 8, pp. 2654-2659, 2004.
[14] B. Gilbert, F. Huang, H. Zhang, G. A. Waychunas, and J. F.
Banfield, "Nanoparticles: strained and stiff," Science, vol. 305, no.
5684, pp. 651-654, 2004.
[15] N. Wakabayashi, K. Takeuchi, H. Uchida, and M. Watanabe,
"Characterization of methoxy fuels for direct oxidation-type fuel
cell," Journal of the Electrochemical Society, vol. 151, no. 10, p.
A1636, 2004.
[16] R. Chetty and K. Scott, "Dimethoxymethane and
trimethoxymethane as alternative fuels for fuel cells," Journal of
power sources, vol. 173, no. 1, pp. 166-171, 2007.
[17] G. Kerangueven, E. Sibert, F. Hahn, and J.-M. Leger,
"Dimethoxymethane (DMM) electrooxidation on carbon-supported
Pt-based nanosized catalysts for PEMFC," Comptes Rendus Chimie,
vol. 17, no. 7-8, pp. 760-769, 2014.
[18] N. Semagina and L. Kiwi‐Minsker, "Recent advances in the
liquid‐phase synthesis of metal nanostructures with controlled
shape and size for catalysis," Catalysis Reviews, vol. 51, no. 2, pp.
147-217, 2009.
[19] A. J. Dyakonov and E. A. Robinson, "Low-temperature oxidation
of CO in smoke: a review," Contributions to Tobacco & Nicotine
Research, vol. 22, no. 2, pp. 89-106, 2006.
[20] M. Valden, X. Lai, and D. Goodman, "Onset of catalytic activity of
gold clusters on titania with the appearance of nonmetallic
properties," science, vol. 281, no. 5383, pp. 1647-1650, 1998.
[21] C. D. Pina, N. Dimitratos, E. Falletta, M. Rossi, and A. Siani,
"Catalytic performance of gold catalysts in the total oxidation of
VOCs," Gold Bulletin, vol. 40, pp. 67-72, 2007.
[22] 劉. 蔡瑞銘, "化工資訊與商情月刊 21 (2005) " 2005.
[23] S. Guo and E. Wang, "Synthesis and electrochemical applications
of gold nanoparticles," Analytica chimica acta, vol. 598, no. 2, pp.
181-192, 2007.
[24] R. Feng, M. Li, and J. Liu, "Synthesis of core–shell Au@ Pt
nanoparticles supported on Vulcan XC-72 carbon and their
electrocatalytic activities for methanol oxidation," Colloids and
Surfaces A: Physicochemical and Engineering Aspects, vol. 406,
pp. 6-12, 2012.
[25] T. T. T. MAI, "Influences of MOISTURE on ROOM
TEMPERATURE CO OXIDATION over Au/BN catalysts," 化學
工程系, 國立台灣科技大學, 2017.
[26] B. B. Blizanac, M. Arenz, P. N. Ross, and N. M. Marković,
"Surface electrochemistry of CO on reconstructed gold single
crystal surfaces studied by infrared reflection absorption
spectroscopy and rotating disk electrode," Journal of the American
Chemical Society, vol. 126, no. 32, pp. 10130-10141, 2004.
[27] R. Ferrando, J. Jellinek, and R. L. Johnston, "Nanoalloys: from
theory to applications of alloy clusters and nanoparticles,"
Chemical reviews, vol. 108, no. 3, pp. 845-910, 2008.
[28] S. Strbac, S. Petrovic, R. Vasilic, J. Kovac, A. Zalar, and Z.
Rakocevic, "Carbon monoxide oxidation on Au (1 1 1) surface
decorated by spontaneously deposited Pt," Electrochimica Acta,
vol. 53, no. 2, pp. 998-1005, 2007.
[29] M. Van Brussel, G. Kokkinidis, I. Vandendael, and C. Buess-
Herman, "High performance gold-supported platinum
electrocatalyst for oxygen reduction," Electrochemistry
communications, vol. 4, no. 10, pp. 808-813, 2002.
[30] D. Zhao and B.-Q. Xu, "Platinum covering of gold nanoparticles
for utilization enhancement of Pt in electrocatalysts," Physical
Chemistry Chemical Physics, vol. 8, no. 43, pp. 5106-5114, 2006.
[31] S. Wang, N. Kristian, S. Jiang, and X. Wang, "Controlled synthesis
of dendritic Au@ Pt core–shell nanomaterials for use as an
effective fuel cell electrocatalyst," Nanotechnology, vol. 20, no. 2,
p. 025605, 2008.
[32] I.-S. Park, K.-S. Lee, D.-S. Jung, H.-Y. Park, and Y.-E. Sung,
"Electrocatalytic activity of carbon-supported Pt–Au nanoparticles
for methanol electro-oxidation," Electrochimica acta, vol. 52, no.
18, pp. 5599-5605, 2007.
[33] S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A. I. Frenkel, and P.
Chupas, "Structural and architectural evaluation of bimetallic
nanoparticles: a case study of Pt− Ru core− shell and alloy
nanoparticles," Acs Nano, vol. 3, no. 10, pp. 3127-3137, 2009.
[34] S. Zhang, Y. Shao, G. Yin, and Y. Lin, "Recent progress in
nanostructured electrocatalysts for PEM fuel cells," Journal of
Materials Chemistry A, vol. 1, no. 15, pp. 4631-4641, 2013.
[35] N. Kristian and X. Wang, "Ptshell–Aucore/C electrocatalyst with a
controlled shell thickness and improved Pt utilization for fuel cell
reactions," Electrochemistry communications, vol. 10, no. 1, pp.
12-15, 2008.
[36] M. Duarte, A. Pilla, J. M. Sieben, and C. E. Mayer, "Platinum
particles electrodeposition on carbon substrates," Electrochemistry
communications, vol. 8, no. 1, pp. 159-164, 2006.
[37] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, and Z. L. Wang,
"Synthesis of tetrahexahedral platinum nanocrystals with highindex
facets and high electro-oxidation activity," science, vol. 316,
no. 5825, pp. 732-735, 2007.
[38] 李桂銓, "金與金鉑雙金屬奈米顆粒製備以及其CO 氧化電極反
應的活性分析," 化學工程學系, 國立台灣科技大學, 99.
[39] 黃博星, "電沉積法製備鉑與金鉑簇粒在玻璃碳電極探討直接氨
燃料電池的反應機制," 化學工程學類, 長庚大學, 104.
[40] 楊澤浩, "個別沉積製備金鉑合金簇粒在玻璃碳電極改善對硼氫
化鈉的催化反應," 化學工程學類, 長庚大學, 103.
[41] S. L. Gojković, S. Zečević, and R. Savinell, "O 2 Reduction on an
Ink‐Type Rotating Disk Electrode Using Pt Supported on
High‐Area Carbons," Journal of the Electrochemical Society, vol.
145, no. 11, p. 3713, 1998.
[42] T. Schmidt, H. Gasteiger, G. Stäb, P. Urban, D. Kolb, and R. Behm,
"Characterization of high‐surface‐area electrocatalysts using a
rotating disk electrode configuration," Journal of the
Electrochemical Society, vol. 145, no. 7, p. 2354, 1998.
[43] R.-B. Lin and S.-M. Shih, "Kinetics of hydrogen oxidation reaction
on Nafion-coated Pt/C electrodes under high overpotentials,"
Journal of the Chinese Institute of Chemical Engineers, vol. 38, no.
5-6, pp. 365-370, 2007.
[44] S. Rudi, C. Cui, L. Gan, and P. Strasser, "Comparative study of the
electrocatalytically active surface areas (ECSAs) of Pt alloy
nanoparticles evaluated by H upd and CO-stripping voltammetry,"
Electrocatalysis, vol. 5, pp. 408-418, 2014.
[45] K. Rong, L. Huang, H. Zhang, J. Zhai, Y. Fang, and S. Dong,
"Electrochemical fabrication of nanoporous gold electrodes in a
deep eutectic solvent for electrochemical detections," Chemical
Communications, vol. 54, no. 64, pp. 8853-8856, 2018.
[46] 陳虹文, "應用脈衝式電鍍技術製備低溫燃料電池觸媒及其電池
效能分析," 工程與系統科學系, 國立清華大學, 98.
[47] W. Ye, H. Kou, Q. Liu, J. Yan, F. Zhou, and C. Wang,
"Electrochemical deposition of Au–Pt alloy particles with
cauliflower-like microstructures for electrocatalytic methanol
oxidation," International journal of hydrogen energy, vol. 37, no. 5,
pp. 4088-4097, 2012.
[48] A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh, and N.
Alonso-Vante, "Activity of platinum− gold alloys for glucose
electrooxidation in biofuel cells," The Journal of Physical
Chemistry B, vol. 111, no. 34, pp. 10329-10333, 2007.
[49] G. Kéranguéven, A. Berná, E. Sibert, J. Feliu, and J.-M. Léger,
"Dimethoxymethane electrooxidation on low index planes of
platinum single crystal in acid media," Electrochimica acta, vol. 54,
no. 2, pp. 394-402, 2008.
[50] D. Y. Chung, K.-J. Lee, and Y.-E. Sung, "Methanol electrooxidation
on the Pt surface: revisiting the cyclic voltammetry
interpretation," The Journal of Physical Chemistry C, vol. 120, no.
17, pp. 9028-9035, 2016.

QR CODE