簡易檢索 / 詳目顯示

研究生: 張茹鈞
Ju-Chun Chang
論文名稱: 粉末冶金 AISI 440C不銹鋼添加Nb之微結構與機械性質
Microstructure and Mechanical Properties of 440C-NbC Stainless Steel Fabricated by Powder Metallurgy Process
指導教授: 林舜天
Shun-Tian Lin
口試委員: 郭俞麟
Yu-Lin, Joseph, Kuo
胡泉凌
Chuan-Lin Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 84
中文關鍵詞: 440C不鏽鋼碳化鈮粉末冶金析出強化
外文關鍵詞: 440C martensitic stainless steels, NbC, Powder Metallurgy, precipitation hardening
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AISI 440C 屬高含碳量之麻田散鐵系不銹鋼,其擁有極佳的硬度、耐腐蝕性及機械強度,因此常應用於工業軸承及醫療等耐磨耗及耐腐蝕部分。本研究利用PM製程將440C-NbC預合金粉末與黏黏劑PVA造粒後,經加壓成形後,以1250°C至1290°C燒結溫度進行真空燒結,求得最佳燒結溫度及其燒結密度,再經淬火均質化及不同回火溫度熱處理,觀察金屬間化合物的析出行為及機械性質。
    實驗結果顯示,在1280°C時可達到液相燒結,其密度為7.63 g/cm3,而當熱處理後硬度表現亦為最佳,具有56 HRC。對照微觀結構可以發現隨回火溫度升高,其晶界之M23C6析出碳化物減少,多固溶回基底中,而NbC則是細小且均勻散佈在基地中形成析出強化相。熱處理前後腐蝕之形貌可觀察出燒結後因沿晶析出之碳化物造成粒間腐蝕,熱處理後因M23C6固溶回基地再以小顆粒析出,雖然進一步提升基地之強度,但其就為基地之晶粒腐蝕,晶界上則存在少量析出之耐腐蝕性佳的碳化鉻。整體來說,淬火與回火熱處理能夠有效改善碳化
    物大小,並具有強化基地之效果。


    AISI 440C is a high carbon martensitic stainless steel with excellent hardness, moderate corrosion resistance and good strength. Therefore, it's commonly used in industrial bearings and medical appliances which need both good wear resistance and corrosion resistance. In this study, a spray dried pre-alloyed 400C powder, alloyed with 1.5 wt% Nb, was uniaxially die-pressed, and sintered at temperature ranging from 1250°C to 1290°C in a vacuum furnace. Furthermore, a series heat treatment processes, including austenitizing temperature at 1040°C, N2 gas quenching to room temperature, and tempering at 160°C, 200°C, and 230°C, was performed to examine the variation of mechanical properties associated with evolution of microstructure.
    The experimental results showed that a high sintered density of 7.63 g/cm3 was achieved at sintering temperature of 1280°C, whose hardness can be as high as 56 HRC after heat treatment. A large portion of the carbide in the grain boundaries dissolved back to the grains after heat treatment, while the precipitates of NbC hardening phase are small and spread evenly inside the grains. Nevertheless, pull-out of large carbide grains for the heat- treated specimens sintered at 1280°C and 1290°C and indicate that the tempering time is too short for the re-dissolution of the carbides from the grain boundaries. The as-sintered specimen shows intergranular corrosion, due to the precipitation of carbides along the grain boundaries. On the other hand, grain boundaries become more corrosion resistant than the grains for the heat-treated specimens.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 研究背景與文獻回顧 2 2.1 不銹鋼與麻田散鐵系不銹鋼 2 2.2 AISI 440C不銹鋼 3 2.3 麻田散鐵相變態 5 2.3.1 麻田散鐵晶體結構 6 2.4 合金元素的影響 12 2.5 回火 17 2.5.1 回火四階段 17 2.5.2 回火碳化物 19 第三章 實驗方法與步驟 22 3.1 實驗設計 22 3.2 生胚製備 23 3.3 熱脫脂及燒結 24 3.4 熱處理 25 3.5 性質分析 27 3.5.1 密度 27 3.5.2 硬度 28 3.5.3 金相觀察 29 3.5.4 電子顯微鏡與元素能譜分析 29 3.5.5 X光繞射儀(X-ray Diffractometer) 30 3.5.6 熱分析(Termal Analyzer) 31 第四章 結果與討論 32 4.1 熱脫脂 34 4.2 燒結 36 4.2.1 XRD分析 39 4.2.2 微組織觀察 41 4.3 熱處理 45 4.3.1 XRD分析 46 4.3.2 微觀組織的觀察 47 4.3.3 機械性質的影響 51 第五章 結論與建議 53 參考文獻 54 附錄A 61 附錄B 63 附錄C 67 附錄D 68 附錄E 78 附錄F 84

    [1] J.R. Davis. 1994. ASM Specialty Handbook: Stainless Steels. Materials Park, Ohio: ASM International.
    [2] P.M. Unterweiser, H.E. Boyer, and J.J. Kubbs. 1982. Heat Treater’s Guide: Standard Practices and Procedures for Steels. 401. Materials Park, Ohio: ASM International.
    [3] C.T. Kwok, K.H. Lo, F.T. Cheng, and H.C. Man. 2003. “Effect of Processing Conditions on the Corrosion Performance of Laser Surface-Melted AISI 440C Martensitic Stainless Steel.” Surface and Coatings Technology, 166(2-3): 221-230.
    [4] D. Girodin, L. Manes, J-Y. Moraux, and J-M. de Monicault. 2002. “Characterisation of the XD15N High Nitrogen Martensitic Stainless Steel for Aerospace Bearing.” In: Proceedings of 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”, 3-6 December, Belgium: Liege.
    [5] B. Subramonian, K. Kato, K. Adachi, and B. Basu. 2005. “Experimental Evaluation of Friction and Wear Properties of Solid Lubricant on SUS440C Steel in Liquid Nitrogen.” Tribology Letters, 20(3-4): 263-272.
    [6] A.J. Sedriks. 1979. Corrosion of Stainless Steels. New York: Wiley.
    [7] H. Ovri, C.J. Ohaukwu, K. Bahadirov, M. Larson, and P. Kjeldsteen. 2010. “As-Sintered AISI 440C Stainless Steels with Improved Hardness and Corrosion Resistance.” International Journal of Powder Metallurgy, 46(6): 43-50.
    [8] “Design Guidelines for the Selection and Use of Stainless Steels,” A Designer Handbook Series N 9014. Distributed by Nickel Development Institute, Courtesy of American and Steel Institute and Special Steel Institute of North America.
    [9] M.A. Newell, H.A. Davies, P.F. Messer, and D.J. Greensmith. 2005. “Metal Injection Moulding of Scissors Using Hardenable Stainless Steel Powders.” Powder Metallurgy, 48(3): 227-230.
    [10] J.R. Yang, T.H. Yu, and C.H. Wang. 2006. “Martensitic Transformations in AISI 440C Stainless Steel.” Materials Science and Engineering, A, 438: 276-280.
    [11] A. Idayan, A. Gnanavelbabu, and K. Rajkumar. 2014. “Influence of Deep Cryogenic Treatment on the Mechanical Properties of AISI 440C Bearing Steel.” Procedia Engineering, 97: 1683-1691.
    [12] H.K.D.H. Bhadeshia. 1987. Worked Examples in the Geometry of Crystals. 56. London: The Institute of Materials.
    [13] G.R. Speich, and W.C. Leslie. 1972. “Tempering of Steel.” Metallurgical Transactions, 3(5): 1054.
    [14] G. Krauss. 2005. Steels-Processing, Structure, and Performance. Second Edition. 63-93. Materials Park, Ohio: ASM International.
    [15] G. Krauss. 1980. “Principles of Heat Treatment of Steels.” American Society for Metals, 43.
    [16] R.E. Reed-Hill. 1992. Physical Metallurgy Principle. 3rd Edition. MA, Boston: PWS.
    [17] M. Cohen. 1962. Transactions of the Metallurgical Society of AIME. 224: 638. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers.
    [18] C.S. Roberts. 1953. Transactions of the Metallurgical Society of AIME. 197: 203. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers.
    [19] Z. Nishiyama. 1978. Martensitic Transformation. New York: Academic.
    [20] T. Maki. 2007. “Recent Advance in Understanding Martensite in Steels.” In: Proceedings of 1st International Symposium on Steel Science (IS3-2007), 16-19 May, 1-10. Tokyo, Japan: The Iron and Steel Institute of Japan.
    [21] R.E. Reed-Hill. 1994. Physical Metallurgy Principle. 3rd Edition. 590. MA, Boston: PWS.
    [22] R.W. Cahn, P. Haasen, and E.J. Kramer. 1991. Materials Science and Technology A Comprehensive Treatment. Edited by F.B. Pickering. 7: 615. German: Wiley-VCH.
    [23] K. Bungardt, E. Kunze, and E. Horn. 1958. “Investigation of the Structure of the Iron-Chromium-Carbon System.” Archiv fur das Eisenhwn, 29: 193.
    [24] M. Pozuelo, J. E. Wittig, J. A. Jimenez, and G. Frommeyer. 2009. “Enhanced Mechanical Properties of a Novel High-Nitrogen Cr-Mn-Ni-Si Austenitic Stainless Steel via TWIP/TRIP Effects.” Metallurgical and Materials Transactions, Series A 40(8): 1826-183.
    [25] K.H. Lo, C.H. Shek, J.K.L. Lai. 2009. “Recent Developments in Stainless Steels.” Materials Science and Engineering, 65(4-6): 39-104.
    [26] G.B. Olson, and W.S. Owen. 1992. Martensite. 257. Materials Park, Ohio: ASM International.
    [27] G.B. Olson, and W.S. Owen. 1992. Martensite. 269. Materials Park, Ohio: ASM International.
    [28] K.A. Taylor. 1985. “Massachusetts Institute of Technology.” Ph.D. Thesis. In Progress.
    [29] S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura. 1981. “Tempering of Martensitic Steel Studied by Electron Microscopy and Diffraction.” Society Report, RITU. A29(1): 7.
    [30] T.A. Balliett, and G. Krauss. 1976. “The Effect of the First and Second Stages of Tempering on Microcracking in Martensite of an Fe-1.22 C Alloy.” Metallurgical Transactions A, 7A(1): 81-86.
    [31] G.B. Olson, and W.S. Owen. 1992. Martensite. Materials Park, Ohio: ASM International.
    [32] G.R. Speich. 1969. “Tempering of Low-Carbon Martensite.” Transactions TMS-AIME, 245: 2552-2564.
    [33] S.W.K. Shaw, and A.G. Quarrell. 1957. “Ibid.” Journal of the Iron and Steel Institute, 185: 10.
    [34] Harue Wada. 1986. Metallurgical and Materials Transactions A, 17A: 1585. US: Springer.
    [35] 佐藤忠雄,1973,熱處理,13(1): 2。
    [36] R.W. Cahn, P. Haasen, and E.J. Kramer. 1991. Materials Science and Technology A Comprehensive Treatment. Edited by F.B., Pickering. 7: 615. German: Wiley-VCH.
    [37] H. Wohlfromml. 2002. “Powder Injection Molding Stainless Steel-Produce Process, Performance, Application.” Powder Metallurgy, 12(4): 7-15.
    [38] D. Li, H. Hou, L. Liang, and K. Lee. 2010. “Powder Injection Molding 440C Stainless Steel.” The International Journal of Advanced Manufacturing Technology, 49(1-4): 105-110.
    [39] S. Banerjee, and C. J. Jones. 2008 “A Comparison of Techniques for Processing Powder Metal Injection Molded 17-4PH Materials”, World Congress of Powder Metallurgy, Washington DC.
    [40] S. Krug, and S. Zachmann. 2009. “Influence of Sintering Conditionsand Furnace Technology on Chemical and Mechanical Properties of Injection Moulded 316L”, Powder Injection Moulding International, 3(4): 66-70.
    [41] T. Sourmail. 2001 “Precipitation in Creep Resistant Austenitic Stainless Steels.” Materials Science and Technology, 17(1): 1-14.
    [42] R.F.A. Jargelius-Pettersson. 1998. “Precipitation Trends in Highly Alloyed Austenitic Stainless Steels.” Z Metallkd, 89(3): 177-183. Munich, Berlin, Germany: Carl Hanser Verlag.
    [43] C.M. Lin, C.M. Chang, J.H. Chen and W. Wu. 2010. “Hardness, toughness and cracking systems of primary (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides in high-carbon Cr-based alloys by indentation.” Materials Science and Engineering, 527A: 5038-5043.
    [44] J.A. Jiménez, M. Carsí, G. Frommeyer, O.A. Ruano. 2005. “Microstructural and mechanical characterisation of composite materials consisting of M3/2 high speed steel reinforced with niobium carbides.” Powder Metallurgy, 48(4): 371-376.
    [45] Y.F. Mi, J.C. Cao, Z.Y. Zhang, H.Q. Qi, X.L. Zhou, and Q.L. Yong. 2012. “Effect of carbon content on the solubility of niobium carbide in austenite.” Iron and Steel/ Gangtie, 47(3): 84-88.
    [46] Computational Thermodynamics, “http://www.calphad.com/
    martensitic_stainless_steel_for_knives_part_1.html”.
    [47] Factsage,“http://www.factsage.cn/fact/documentation/FSstel/Fe-Cr-C1523.jpg”.
    [48] G. V. Samsonov. 2013. Properties index. US: Springer.
    [49] M.W. Chase, J.L. Curnutt, J.R. Downey, R.A. McDonald, and A.N. Syverud. 1975. “JANAF Thermochemical Tables, 1975 Supplement” Journal of Physical and Chemical Reference Data, 4(1).
    [50] E.Y. Huber Jr, E.L. Head, C.E. Holley Jr, E.K. Storms, and N.H. Krikorian. 1961. “The Heats of Combustion of Niobium Carbines 1.” The Journal of Physical Chemistry, 65(10): 1846-1849.
    [51] K. T. Jacob, Chander Shekhar, and M. Vinay. 2010. “Thermodynamic Properties of Niobium Oxides.” Journal of Chemical and Engineering Data, 55 (11): 4854–4863.
    [52] L. Brewer, G.M. Rosenblatt. 1969. “Dissociation Energies and Free Energy Functions of Gaseous Monoxides.” In: Advances in High Temperature Chemistry, Edited by L. Eyring. 2: 56. New York: Academic.

    無法下載圖示 全文公開日期 2020/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE