簡易檢索 / 詳目顯示

研究生: 陳世軒
Shih-Hsuan Chen
論文名稱: 八字電感多相位壓控震盪器與頻率倍頻器設計
8-Shape Inductor Multi-Phase Voltage-Controlled Oscillators and Frequency Multipliers Design
指導教授: 張勝良
Sheng-Lyang Jang
宋峻宇
Jiun-Yu Sung
口試委員: 張勝良
Sheng-Lyang Jang
宋峻宇
Jiun-Yu Sung
賴文政
Wen-Cheng Lai
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 114
中文關鍵詞: 8字電感多相位壓控震盪器
外文關鍵詞: 8-Shape Inductor, Multi-Phase, Voltage-Controlled Oscillators
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技的進步,3C產品的開發及推廣,已經成為生活必需品了。而射頻積體電路(RFIC)就是這些產品必須用到的技術,例如家電的各式遙控器、電腦手機平板等電子產品,都會使用到。射頻積體電路(RFIC)由功率放大器(Power amplifier)、收發器(Transceiver)以及鎖相迴路(Phase lock loop)所組成。而本篇論文所探討的重點為鎖相迴路(Phase lock loop)中會使用到的壓控震盪器(VCO)、除頻器(FD)以及倍頻器(FM)的部分。
第一部分介紹了採用 tsmc 0.18 μm CMOS 技術的 3.4 GHz 振盪器的設計和測量。 全集成芯片採用閉環雙絞變壓器耦合傳輸線,佔地面積小,僅為1.2×1.2 mm2。 正交特性是通過傳輸線上的行波形成駐波來確保的。 由於使用了雙絞電感無源器件,QVCO 對附近電路產生的遠場干擾更少,耦合效應也更小。 電源電壓為 1.7 V 時,電流消耗為 11.32 mA。 QVCO 的自由運行頻率是可調的。 在 1MHz 頻率偏移處測得的相位噪聲在 3.4 GHz 振盪頻率下為 -125.73 dBc/Hz,所提議 QVCO 的品質因數 (FOM) 為 -185.38 dBc/Hz。
第二部分介紹了一個電流復用倍頻器 (×2 FD),它形成了一個帶有壓控 VCO 的發送器。 可調諧 21GHz 發射器採用 180 nm BiCMOS 工藝,全晶片佔用面積 0.84×1.163 mm2。 (×2 FD) 使用堆疊在緩衝器上的倍頻器,SiGe HBT 緩衝器提取倍頻器輸出信號。延伸倍頻器的應用設計出使用 0.18 μm CMOS 工藝的 3.7 GHz 有源倍頻器的設計和測量。全集成倍頻芯片佔地1.129×1.1 mm2,包含兩路電路,一路採用雙絞變壓器,節省芯片面積,另一路採用兩個電感。倍頻器使用兩個電流復用倍頻器來增加轉換增益。
最後一部分通過模擬電流重用 CMOS 24 分頻注入鎖定分頻器 (ILFD) 和基於 4 分頻環形振盪器的 ILFD 在電容交叉耦合 LC 6 分頻 ILFD 上進行研究。 台積電 0.18 μm 1P6M CMOS 工藝中的第一個 24 分頻 ILFD 佔據了 1.2×1.198 mm2 的小面積。 仿真顯示環形振盪器 ILFD 具有寬鎖定以跟踪 LC-sub ILFD 的輸出頻率信號。


With the advancement of technology, the development and promotion of 3C products have become necessities of life. The radio frequency integrated circuit (RFIC) is the technology that these products must use. For example, all kinds of remote controllers for home appliances, computers, mobile phones, tablets and other electronic products are used. The radio frequency integrated circuit (RFIC) is composed of a power amplifier, a transceiver and a phase lock loop. The focus of this paper is the voltage-controlled oscillator (VCO), frequency divider (FD) and frequency multiplier (FM) that will be used in the phase lock loop.
The first part presents the design and measurements of a 3.4 GHz oscillator using in the tsmc 0.18 μm CMOS technology. The fully-integrated chip uses a closed-loop twisted transformer-coupled transmission line and occupies a small area of 1.2×1.2 mm2. The quadrature property is ensured by the traveling wave on the transmission line forming a standing wave. As twisted inductive passives are used, the QVCO generates less far-field interference on the near-by circuits and suffers less coupling effect too. At the supply voltage of 1.7 V, the current consumption is 11.32 mA. The free-running frequency of the QVCO is tuneable. The measured phase noise at 1MHz frequency offset is -125.73 dBc/Hz at the oscillation frequency of 3.4 GHz and the figure of merit (FOM) of the proposed QVCO is -185.38 dBc/Hz.
The second part presents a current-reused frequency doubler (×2 FD), which forms a transmitter with a voltage-controlled VCO. The tunable 21GHz transmitter uses the 180 nm BiCMOS process and the fully-integrated chip occupies a die area of 0.84×1.163 mm2. The ×2 FD uses a frequency doubler stacked on a buffer and SiGe HBT buffer extracts the doubler output signal. The application of the doubler is designed and measurements of a 3.7 GHz active frequency doubler using 0.18 μm CMOS process is present. The fully-integrated frequency doubler chip occupies an area of 1.129×1.1 mm2, and it includes two circuits, one circuit uses a twisted transformer to save die area and the other uses two inductors. The frequency doublers uses two current-reused frequency doublers to increase the conversion gain.
The final part studies by simulation the current-reused CMOS divide-by-24 injection-locked frequency dividers (ILFDs) with a divide-by-4 ring-oscillator-based ILFD on a capacitive cross-coupled LC divide-by-6 ILFD. The divide-by-24 ILFD in the tsmc 0.18 μm 1P6M CMOS process occupies a small area of 1.2×1.198 mm2. Simulation shows the ring-oscillator ILFD has wide locking to track the output frequency signal of the LC-sub ILFD.

中文摘要 I Abstract III 致謝 V Table of contents VI List of Figures VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 2 Chapter 2 Overview of the Voltage-Controlled Oscillators 4 2.1 Introduction 4 2.2 The Oscillators Theory 6 2.2.1 Feedback Oscillators (Two port) 7 2.2.2 Negative Resistance and Resonator (One port) 9 2.3 Category of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 14 2.4 Design concepts of Voltage-Controlled Oscillator 19 2.4.1 Parameters of a Voltage-Controlled Oscillator 20 2.4.2 Phase Noise 22 2.4.3 Quality Factor 27 2.5 Passive Components Design in VCO 29 2.5.1 Inductor Design 29 2.5.2 Transformer Design 39 Chapter 3 Design of Injection Locked Frequency Divider 44 3.1 Introduction 44 3.2 Principle of Injection Locked Frequency Divider 45 3.3 Locking Range 47 Chapter 4 Quadrature VCO with 8-shaped Transformer Coupled T-Line 50 4.1 Introduction 50 4.2 Circuit Design 51 4.3 Measurement and Simulated 54 Chapter 5 Transmitter Using a Current-Reused Frequency Doubler 59 5.1 Introduction 59 5.2 Circuit Design 60 5.3 Measurement and Simulated 63 Chapter 6 Active Frequency Doubler with 8-shaped Transformer 68 6.1 Introduction 68 6.2 Circuit Design 70 6.3 Measurement and Simulated 75 Chapter 7 Simulation of Current-Reused Divide-by-24 Injection-Locked Frequency Dividers 82 7.1 Introduction 82 7.2 Circuit Description of the ILFD 83 7.3 Circuit Simulation of the ILFD 84 Chapter 8 Conclusions 92 References 94

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[5] K.-W. Cheng and Y.-R. Tseng, “5 GHz CMOS quadrature VCO using trifilar-transformer-coupling technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 717–719, Sep. 2016.
[6] J.-S. Syu, C. C. Meng, and G.-W. Huang, “SiGe HBT quadrature VCO utilizing trifilar transformers,” in IEEE ASSCC Dig., 2008, pp. 465–468.
[7] J.-S. Syu, H.-L. Lu, and C. Meng, “A 0.6-V 30 GHz CMOS quadrature VCO using microwave 1:1:1 trifilar transformer,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 88-90, 2012.
[8] L. Fanori, A. Mahmoud, T. Mattsson, P. Caputa, S. Rämö, and P. Andreani, “A 2.8-to5.8 GHz harmonic VCO in a 28 nm UTBB FD-SOI CMOS process,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2015, pp. 195–198.
[9] F. Song, Y. Zhao, B. Wu, L. Tang, L. Lin, and B. Razavi, “16.5 A fractional-N synthesizer with 110fsrms jitter and a reference quadrupler for wideband 802.11ax,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2019, pp. 264–266.
[10] J.-C. Chien, L.-H. Lu, “Design of wide-tuning-range millimeter-wave CMOS VCO With a standing-wave architecture,” IEEE J. Solid State Circuits, no. 9, vol. 42, pp. 1942-1952, Sept. 2007.
[11] L. Wu, A. Ng, L. Leung, and H.C. Luong, “A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13µm CMOS process,” IEEE Radio Frequency Integrated Circuit Symposium. May. 2010, pp.145-148.
[12] T.-Y. Lu and W.-Z. Chen, “A 38/114 GHz switched-mode and synchronous lock standing wave oscillator,” IEEE Microwave Wireless Component Letter, vol. 21, no. 1, pp. 40-42, Dec. 2010.
[13] S.-L. Jang, S.-S. Lin, C.-W. Chang and S.-H. Hsu, ” A complementary cross-coupled quadrature VCO using ring inductor coupling method,” Microw. Opt. Technol. Lett., pp.839-842, April, 2012.
[14] T.-Y. Lu and W.-Z. Chen, “A 38/114 GHz switched-mode and synchronous lock standing wave oscillator,” IEEE Microwave Wireless Component Letter, vol. 21, no. 1, pp. 40-42, Dec. 2010.
[15] Y. Chen and K. D. Pedrotti,“Rotary traveling-wave oscillators, analysis and simulation,” IEEE Trans. Circuits Syst. I, vol. 58, no. 1, pp. 77–87, Jan. 2011.
[16] S.-L. Jang, H.-F. Teng, C.-W. Chang, and C.-W. Hsieh “Quadrature VCO using the composite right-/left-handed dual-resonance resonator,” 2012 Asia-Pacific Microwave Conference (APMC2012). 4D-05.
[17] S.-L. Jang, H.-H. Lin, J.-F. Huang and C.-W. Hsue,” Dual-band rotary standing wave voltage-controlled oscillator,” INT J RF MICROW C E., vol. 24, no. 5, pp. 536-543, May 2014.
[18] L. Wu, A. Ng, L. Leung, and H.C. Luong, “A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13µm CMOS process,” IEEE Radio Frequency Integrated Circuit Symposium. May. 2010, pp.145-148.
[19] N. Sharma, W. Choi, and K. K. O, ‘‘160–310 GHz frequency doubler in 65-nm CMOS with 3-dBm peak output power for rotational spectroscopy,’’ in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2016, pp. 186–189.
[20] K. Schmalz, N. Rothbart, M. H. Eissa, J. Borngraber, D. Kissinger, and H.-W. Hubers, ‘‘Transmitters and receivers in SiGe BiCMOS technology for sensitive gas spectroscopy at 222 - 270 GHz,’’ AIP Advances 9, 015213 (2019); doi: 10.1063/1.5066261.
[21] S. Muralidharan, K. Wu and M. Hella, "A 216GHz 0.5mW transmitter with a compact power combiner in 65nm CMOS," 2015 Asia-Pacific Microwave Conference (APMC), 2015, pp. 1-3, doi: 10.1109/APMC.2015.7413041.
[22] K. Yamamoto, “A 1.8 V operation 5 GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1288–1295, Jun. 2005.
[23] B.-J. Huang, Z.-M. Tsai, B.-J. Huang, K.-Y. Lin, H. Wang, and C.-C. Chiong, “A GaAs-based HBT 31-GHz frequency doubler with an on-chip voltage,” in Asia–Pacific Microw. Conf. Dig., Dec. 2008, pp. 1–4.
[24] I. Ju, C. D. Y. Cheon, and J. D. Cressler, “A compact highly efficient high-power Ka-band SiGe HBT cascode frequency doubler with fourway input transformer balun,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2879–2887, Jun. 2018.
[25] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “High-power high efficiency SiGe Ku- and Ka-band balanced frequency doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754–761, Feb. 2005.
[26] J. Oh, J. Jang, C. Kim, and S. Hong, “A W-band high-efficiency CMOS differential current-reused frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 307–309, May 2015.
[27] E. Monaco, M. Pozzoni, F. Svelto and A. Mazzanti, "Injection-Locked CMOS frequency doublers for μ-Wave and mm-Wave applications," IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1565-1574, Aug. 2010.
[28] K. Yamamoto, “A 1.8 V operation 5 GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1288–1295, Jun. 2005.
[29] L. Zhang, L. Lin, X. Zhu and Y. Wang, "A 140 GHz phase-locked loop with 14.3% locking range in 65-nm CMOS," Int. Conference on Electron Devices and Solid-State Circuits (EDSSC), 2017, pp. 1-2.
[30] J. Li, Y. Xiong, W. L. Goh and W. Wu, "A 27–41 GHz frequency doubler with conversion gain of 12 dB and PAE of 16.9%,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 427-429, Aug. 2012.
[31] J. Li et al., "A PAE of 17.5% Ka-band balanced frequency doubler with conversion gain of 20 dB," 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 345-348.
[32] B.-J. Haung, Z.-M. Tsai, B.-J. Huang, K.-Y. Lin, H. Wang and C.-C. Chiong, "A GaAs-based HBT 31-GHz frequency doubler with an on-chip voltage," 2008 Asia-Pacific Microwave Conference, 2008, pp. 1-4.
[33] I. Ju, C. D. Cheon and J. D. Cressler, "A compact highly efficient high-power Ka-band SiGe HBT cascode frequency doubler with four-way input transformer balun," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2879-2887, June 2018.
[34] F. Ahmed, M. Furqan and A. Stelzer, "A 0.3-THz SiGe-based frequency doubler chip with 3-dB 50 GHz bandwidth and 17 dB peak conversion gain," 12th European Microwave Integrated Circuits Conference (EuMIC), 2017, pp. 134-137.
[35] L. Ye, H. Liao and R. Huang, "A CMOS W-band ×4 frequency multiplier with cascading push-pull frequency doublers," 2012 Asia Pacific Microwave Conference Proceedings, 2012, pp. 166-168.
[36] I. Kallfass, A. Tessmann, H. Massler, S. Wagner and A. Leuther, "A 480 GHz active frequency multiplier-by-four SMMIC," IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3.
[37] J. Oh, J. Jang, C. Kim, and S. Hong, “A W-band high-efficiency CMOS differential current-reused frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, pp. 307–309, May 2015.
[38] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
[39] W.-C. Lai, S.-L. Jang, P.-M. Shih, H.-Chang Lee, M.-H. Juang” Current-reused 6:1 injection-locked frequency divider,” IEEE Int. Wireless Symp. China, Sept., 21-232, 2020.

無法下載圖示 全文公開日期 2024/10/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE