簡易檢索 / 詳目顯示

研究生: 柯志揚
Chih-Yang Ke
論文名稱: 結合聲-光非破壞檢測於隧道環境遭熱驅破壞之傷損判識
Examination of Tunneling Thermo-induced Damage by Acousto-optic Nonintrusive Techniques
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 黃兆龍
Chao-Lung Hwang
王天志
Tien-Chih Wang
陳立憲
Li-Hsien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 213
中文關鍵詞: 水泥基質材料鋼材隧道火害超音波脈衝聲射法電子斑紋干涉術
外文關鍵詞: Cement-based material, Steel, Tunnel fire disasters, Ultrasonic pulse (UP), Acoustic emission (AE), Electronic speckle pattern interferometry (ESPI)
相關次數: 點閱:200下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為建置簡速型火害現場結構安全評估方法,本研究擬以隧道工程支撐系統之脆、延性材受熱驅破壞後,引致材料之巨觀力學傷損及微觀破壞特徵演化之範疇進行系列研探,並以正規化波速指標「剪-壓波速比(VS/VP)」作為評估材料熱損程度之指標。由表層至裏層受熱材料,即二次襯砌之混凝土、一次襯砌噴凝土乃至最終受熱之天然圍岩(脆性材);及岩栓、鋼肋之延性鋼材,於熱驅前、後,分別施以單向壓、拉之完整應力路徑。即以最高溫度作為試驗主要變數(常溫~1200℃),固定每分鐘5℃昇溫控制、於最高溫度狀態下持溫300分鐘(穩態條件)、於爐內自由冷卻至常溫作為受熱歷程,再各自針對脆、延性材施以單壓、拉破壞試驗,其中之單壓試驗過程須佐以環狀側向變位計測(含劈、剪裂縫開口位移)作為試驗控制之回饋訊號,方能包含峰後真實材料反應之完整加載歷程。試驗同時,並結合複合式聲-光非破壞檢測:超音波脈衝(主動)、連續性三維微裂震源量測之聲射法(被動)兩種音波探傷技術、面內位移量測之光學干涉技術;作同步化判識材料三項巨觀力學參數:勁度(E)、強度(qu)、韌度(Tou)之變化;與三項微觀破壞特徵之演化:叢聚、初裂、裂衍。透過超音波脈衝儀量測之「剪-壓波速比(VS/VP)」,連結多尺度之巨-微觀破壞力學特徵,作為後續於災害現場之判識應用。研究以不同設計強度之普通與自充填混凝土作為廣義隧道脆性材料之成果顯示,剪-壓波速比與熱損最高溫度呈正相關;且對應勁度、強度、韌度變化之線性相關係數分別達-0.90、-0.87、-0.77,合理印證該波速比可作為火害傷損辨識指標之適確性。巨觀方面,受熱驅破壞之峰後行為因受熱溫度增加而漸由失穩破壞(Class II路徑)轉成穩定破壞(Class I),此臨界轉換溫度介於200~400℃。微觀方面,脆性材料隨最高熱驅溫度增加;其熱損程度越劇且引致叢聚現象漸不顯著。另一方面,延性鋼材受熱驅-冷卻之溫變歷程中,波速與剪-壓波速比則無顯著性。


To establish a working system in field to evaluate the degree of fire-damage readily for both brittle and ductile tunnel supporting materials, this research focused on the failure characteristics and evolution on both macro-scale (stiffness, strength and toughness) as well as micro-scale (localization, crack initiation and propagation). After applying various heat-driven-damage treatments, both brittle material such as concrete and ductile steel were conducted uniaxial compressive and tensile tests respectively. Furthermore, this study propose a velocity ratio, defined as VS/VP, to be an index to identify the degree of thermos-induced damage in field.
By applying maximum temperature varied from 25 to 1200℃ with constant rate of heating (5℃/min), exposure time (300 mins), and cooling condition (cooling in furnace), the uniaxial compressive and tensile tests with post-peak behavior were obtained by controlling the lateral COD (crack opening displacement) as a feedback signal to conduct the closed-loop experiences. Associated with ultrasonic pulse (UP) and synchronized acousto-optic nonintrusive technique (AE & ESPI), macro- and micro-scale failure of materials were examined corresponding to entire loading histories of uniaxial compressive tests.
The results show that VS/VP has a positive correlation with degree of thermos-induced damage on concrete, the correlation coefficient of VS/VP between stiffness, strength and toughness are -0.90, -0.87 and -0.77 respectively. It proves that the VS/VP can be used to identify the degree of thermos-induced damage such as fire disaster. In macro-scale, concrete suffer heat-driven damage cause the post-peak stability from snap back (Class II) convert to snap through (Class I), and the transition temperature is between 200 to 400℃. In micro-scale, as the maximum temperature increase, the more severe the degree of thermos-induced damage, in addition, it leads to more insignificant “localization” phenomenon gradually. On the other hand, ductile material such as steel during heat-up and cool-down treatment shows insignificant response of VP, VS.

摘要 I 英文摘要 II 誌謝 IV 目錄 V 表目錄 X 圖目錄 XI 符號對照表 XXII 第一章 緒論 1 1.1研究動機 1 1.2研究目的 3 1.3研究範圍與方法 5 1.4研究架構與流程 8 第二章 文獻回顧 11 2.1水泥基質材與鋼材受熱驅作用引致材料性質變化 11 2.1.1水泥基質材受熱驅作用之性質探討 11 2.1.2水泥基質材之熱驅變數與力學性質 16 2.1.3鋼材受熱驅作用之性質探討 22 2.2國內熱驅破壞之沿革 30 2.3國內外之耐火試驗規範與實例 35 2.4破壞一-混凝土單軸壓縮試驗之完整加載歷程、峰後行為與試驗影響因子 39 2.4.1完整加載歷程 39 2.4.2完整加載歷程之峰後行為探討 44 2.4.3材料尺寸與形狀之試驗影響因子 47 2.4.4加載速率之試驗影響 52 2.5破壞二-鋼材單軸拉伸試驗之應力-應變加載曲線 53 2.6非破壞檢測一-超音波脈衝 57 2.6.1彈性應力波傳理論 57 2.6.2超音波脈衝檢測技術 63 2.7非破壞檢測二-聲射技術 67 2.7.1微裂事件發生時機與定位技術 67 2.7.2三維定位準則 69 2.8非破壞檢測三-電子斑紋干涉術 71 2.8.1斑點效應之特性 71 2.8.2面內位移場量測 71 第三章 試驗架構與執行 75 3.1試驗變數與編碼說明 77 3.1.1試驗材料 77 3.1.2試驗變數與定值 79 3.1.3試驗編碼說明 81 3.2昇溫模擬試體備製與熱傳理論解析 83 3.2.1昇溫模擬火害試體備製 83 3.2.2熱傳導理論解析 87 3.3破壞試驗儀設 91 3.3.1混凝土單壓-MTS伺服液壓加載系統 91 3.3.2鋼棒單壓-萬能試驗機 92 3.4破壞試驗設備校正 93 3.5非破壞檢測儀設 95 3.5.1超音波脈衝量測儀 95 3.5.2聲射模組與訊號擷取系統 96 3.5.3電子斑紋干涉術-面內位移量測系統 99 3.5.4光學式座標監測系統 104 3.6非破壞檢測校正 106 3.6.1超音波脈衝量測校正 106 3.6.2聲射法微裂能量距離校正 107 3.7試驗方法與流程 110 3.7.1混凝土單壓試驗 110 3.7.2鋼棒單拉試驗 114 第四章 試驗結果與分析 117 4.1試驗參數說明 118 4.1.1巨觀參數定義與符號說明 118 4.1.2微觀破壞特徵定義與說明 122 4.2混凝土受熱驅作用前、後於單壓應力路徑之巨觀力學 125 4.3混凝土受熱驅作用前、後於單壓應力路徑之微觀特徵 134 4.3.1聲學-聲射法之非破壞檢測成果 134 4.3.2光學-電子斑紋干涉術之非破壞檢測成果 151 4.4混凝土受熱驅作用後波速、波速比與巨、微觀參數關係 163 4.4.1超音波波速及剪-壓波速比變化 164 4.4.2超音波剪-壓波速比與巨觀力學參數關係 168 4.4.3超音波剪-壓波速比與微觀破壞特徵關係 177 4.5鋼棒受熱驅作用前、後於單拉應力路徑之巨觀力學 180 4.6鋼棒受熱驅作用後波速及剪-壓波速比變化 189 第五章 結論與建議 193 5.1 結論 194 5.1.1脆性材受熱驅破壞之巨、微觀特徵及其與剪-壓波速比關係 194 5.1.2延性材受熱驅破壞之巨、微觀特徵及其與剪-壓波速比關係 195 5.2 建議 197 5.2.1材料部分 197 5.2.2試驗部分 197 5.2.3非破壞性檢測部分 198 5.2.4資料庫建置與探勘部分 199 5.2.5進階文獻之蒐整與應用 200 參考文獻 201 附錄 205 附錄一:自充填混凝土配比設計表 205 附錄二:SD 420W #10 鋼筋出廠證明書 206 口試委員意見回覆 207

[1] 莫若楫,台北市捷運工程之回顧,亞新工程顧問股份有限公司論文集,2002。
[2] 周胤德、忻元發、張世忠,從近年國內外之重大公路長隧道事故探討,臺灣公路工程,第七卷,第2-13頁,2004。
[3] A. Lönnermark and H. Ingason, "Gas temperatures in heavy goods vehicle fires in tunnels," Fire Safety Journal, vol. 40, pp. 506-527, 2005.
[4] R. E. Goodman, Introduction to Rock Mechanics. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 1989.
[5] O. Arioz, "Effects of elevated temperatures on properties of concrete," Fire Safety Journal, vol. 42, pp. 516-522, 2007.
[6] 沈進發、陳舜田,高溫造成混凝土材料性質改變及火場溫度推估法,科技圖書,台北市,1999。
[7] 黃兆龍,混凝土性質與行為,詹氏書局,台北市,1997。
[8] 詹雅竹,再生混凝土及高溫後砂漿工程性質之研究,碩士,營建工程系,國立臺灣科技大學,台北市,2006。
[9] S. Mindess and J. F. Young, Concrete. Taiwan, Taipei: Rinbow Bridge Book company, 1984.
[10] 黃士元,近代混凝土技術,陝西科學技術出版社,西安市,2002。
[11] V. Kodur, "Properties of Concrete at Elevated Temperatures," ISRN Civil Engineering, vol. 2014, pp. 1-15, 2014.
[12] G. T. G. Mohamedbhai, "Effect of exposure time and rates of heating and cooling on residual strength of heated concrete," Magazine of Concrete Research, vol. 38, pp. 151-158, 1986.
[13] P. K. Mehta and P. J. M. Monteiro, Concrete. New York: McGraw-Hill 2006.
[14] 董世柱、徐维良,鋼結構及其熱處理,遼寧科學技術出版社,瀋陽市,2009。
[15] X. Qiang, F. S. K. Bijlaard, and H. Kolstein, "Post-fire mechanical properties of high strength structural steels S460 and S690," Engineering Structures, vol. 35, pp. 1-10, 2012.

[16] J. Lu, H. Liu, Z. Chen, and X. Liao, "Experimental investigation into the post-fire mechanical properties of hot-rolled and cold-formed steels," Journal of Constructional Steel Research, vol. 121, pp. 291-310, 2016.
[17] W. Wang, T. Liu, and J. Liu, "Experimental study on post-fire mechanical properties of high strength Q460 steel," Journal of Constructional Steel Research, vol. 114, pp. 100-109, 2015.
[18] Z. Chen, J. Lu, H. Liu, and X. Liao, "Experimental study on the post-fire mechanical properties of high-strength steel tie rods," Journal of Constructional Steel Research, vol. 121, pp. 311-329, 2016.
[19] Z. Tao, X.-Q. Wang, and B. Uy, "Stress-Strain Curves of Structural and Reinforcing Steels after Exposure to Elevated Temperatures," Journal of Materials in Civil Engineering, vol. 25, pp. 1306-1316, 2013.
[20] 張育誠,連續熱損顆粒材之破裂韌度與拉力強度及其聲光破壞演化,碩士,營建工程系,國立臺灣科技大學,台北市,2013。
[21] 施佩文,有限元素法研析擬脆材料受熱驅破壞之熱-固耦合,碩士,營建工程系,國立臺灣科技大學,台北市,2013。
[22] 劉峵瑋,擬脆性固材於熱驅破壞之準靜、動態力學行為,博士,營建工程系,國立臺灣科技大學,台北市,2015。
[23] 曹祖璟,土、建工程之脆延性固材於熱力-固力耦合下之巨-微觀破壞特徵及火害度判識,碩士,土木工程系土木與防災碩士班,國立臺北科技大學,台北市,2015。
[24] E. Committee, "Eurocode 2: Design of concrete structures - Part 1-2 : General rules - Structural fire design," in EN 1992-1-2, European Standard, 2004.
[25] W. R. Wawersik and C. Fairhurst, "A study of brittle rock fracture in laboratory compression experiments," International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 7, pp. 561-575, 1970.
[26] B. H. G. Brady and E. T. Brown, Rock Meachanics. London, Glasgow, New York, Tokyo, Melbourne, Madras: CHAPMAN & HALL, 1993.
[27] E. Committee, "Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings," in EN 1992-1-1, European Standard, 2004.
[28] J. F. Lamond and J. H. Pielert, Significance of Tests and Properties of Concrete and Concrete-Making Materials. U.S.A: ASTM International, 2006.
[29] 中華民國國家標準,試驗室混凝土試體製作及養護法,CNS 1230,經濟部標準檢驗局,2005。
[30] 中華民國國家標準,混凝土圓柱試體抗壓強度檢測法,CNS 1232,經濟部標準檢驗局,2014。
[31] J. R. Davis, Tensile Testing. U.S.A.: ASM International, 2004.
[32] K. B. Chary, L. P. Sarma, K. J. P. Lakshmi, N. A. Vijayakumar, V. N. Lakshmi, and M. V. M. S. Raoreview, "Evaluation of Engineering Properties of Rock Using Ultrasonic Pulse," Proceedings of the National seminar on Non-destructive evaluation, Hyderabad, India, pp. 379-385, 2006.
[33] H. Soroush and H. Qutob, "Evaluation of Rock Properties Using Ultrasonic Pulse Technique and Correlating Static to Dynamic Elastic Constants," presented at the The 2nd South Asian Geoscience Conference, Greater Noida, New Delhi, India, 2011.
[34] ASTM, "Standard Test Method for Pulse Velocity Through Concrete," in C 597, American Society for Testing Material, 2009.
[35] V. M. Malhotra and N. J. Carino, Handbook on Nondestructive Testing of Concrete CRC PRESS, 2004.
[36] S. Nazarian and K. H. Stokoe, "Evaluation of moduli and thicknesses of pavement systems by spectral-analysis-of-surface-waves method," ed: Interim Research Report Texas Univ., Austin. Center for Transportation Research., 1983.
[37] 黃智偉,超音波量測混凝土表面斜向裂縫之波動傳遞行為研究,碩士,土木工程系,國立屏東科技大學,屏東縣,2002。
[38] 蔡昇哲,應用非破壞檢測之聲射法於岩石貫切破壞試驗之探討,碩士,營建工程系,國立臺灣科技大學,台北市,2005。
[39] ASTM, "Standard Terminology for Nondestructive Examinations," in E 1316, American Society for Testing Material, 2006.
[40] M. Ohtsu, "The history and development of acoustic emission in concrete engineering," Magazine of Concrete Research, vol. 48, pp. 321-330, 1996.
[41] L. H. Chen, "Failure of Rock under Normal Wedge Indentation," Ph.D., Department of Civil & Mineral Engineer, University of Minnesota, 2001.
[42] ASTM, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens," in C 39M, American Society for Testing Material, 2014.
[43] 中華民國國家標準,金屬材料拉伸試驗片,CNS 2112,經濟部標準檢驗局,2012。
[44] 中華民國國家標準,金屬材料拉伸試驗法,CNS 2111,經濟部標準檢驗局,2013。
[45] Y. Zhiwu, D. Faxing, and W. Hailin, "Experimental research on the mechanical properties of steel after high temperature," in Fourth International Conference on Advances in Steel Structures, Oxford: Elsevier Science Ltd, 2005, pp. 1071-1076.

QR CODE