簡易檢索 / 詳目顯示

研究生: 謝博荃
Po-Quan Hsieh
論文名稱: 適用於生理訊號感測應用之雙旁通切換循序漸進式類比數位轉換器暨高速類比數位轉換器電路設計
The Circuit Design of Dual Bypass Switching SAR ADC Suitable for Physiological Signal Detection and High Speed SAR ADC
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳信樹
Hsin-Shu Chen
鍾勇輝
Yung-Hui Chung
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 108
中文關鍵詞: 旁通切換循序漸進式類比數位轉換器高速類比數位轉換器
外文關鍵詞: Bypass Switching, SAR ADC, High Speed ADC
相關次數: 點閱:402下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文實現一高速中解析度類比數位轉換器,其主要目的是為了了解在高速時會遇到那一些設計上的問題及考量,使用0.18 微米的互補式金氧半製程來實現,其取樣率可高達36MHz,並且採用一冗位元來使轉換器可以容忍一些安定錯
    誤,而參考電壓緩衝電路也包含在晶片內部,來降低因晶片封裝打線寄生電感導致參考電壓震盪問題,其面積大小為137.8 X 302.625μm2。當數位跟類比電壓源為1.8V 時,其量測結果的信號雜訊失真比率與無雜散動態範圍最高分別為51.6922 dB 和51.1916 dB,並實現了8.2112 的有效位元數,消耗功率為1.7366mW。另外為了降低功耗,將數位跟類比電壓源降為1.65V 時,其量測結果的信號雜訊失真比率與無雜散動態範圍最高分別為47.6795 dB 和47.3872 dB,並實現了7.5793 的有效位元數,消耗功率為1.3138mW, FoM 為191.35 fJ/conv.-step。
    另外本論文提出一適用於生理訊號感測應用之雙旁通切換循序漸進式類比數位轉換器電路設計,其旁通窗實現方式分別由動態鄰近比較器及次類比數位轉換器來實現,增加可以感測的訊號,並維持低功耗,其電路實現於0.18 微米的互補式金氧半製程,面積大小為282.46 X 412μm2。當供應電壓源為0.6V 時,取樣率為100 kS/s,輸入頻率為49.98 kHz 時,其量測結果的信號雜訊失真比率與無雜散動態範圍分別為55.9341 dB 和60.3672 dB,並實現了8.7461 的有效位元數,消耗功率為368.0675 nW,FoM 為8.23 fJ/conv.-step。除此之外,一校正狀態機使用數位合成做在晶片中,使晶片可以在使用前自動校正雙旁通,以避免因旁通過大導致線性度下降,並且一W-2W 數位類比轉換器做在晶片中以提供旁通窗調整電壓,進而不需要外部校正電路及外部旁通窗調整電壓電路。


    This thesis implements a high speed, medium resolution ADC, the design proposal is to realize the high-speed ADC design issues and considerations, the ADC is designed in 180 nm CMOS process, which sampling rate is up to 36MHz, one redundancy is adopted to recovering the settling error, and the reference buffer is on-chip to suppressing the reference voltage ringing, which induced from the bounding wire parasitic inductance, the core area is 137.8 X 302.625μm2. When the ADC supply voltages are 1.8V, the measured SNR and SFDR are up to 51.6922 dB and 51.1916 dB, the ENOB is 8.2112 bits, the power consumption is 1.7366 mW. To reducing power consumption, the ADC supply voltages down to 1.65V, the measured SNR and SFDR are up to 47.6795 dB, and 47.3872 dB, the ENOB is 7.5793 bits, the power consumption is 1.3138mW, the FoM is 191.35 fJ/
    conv.-step.

    Abstract in Chinese...i Abstract in English...ii Contents...iv List of Figures...vii List of Tables...xiv 1 Introduction...p1 2 Background Knowledge...p7 3 High Speed SAR ADC in 180nm Implementation...p23 4 Proposed Dual Bypass-Switching SAR ADC in 180nm Implementation...p53 5 Conclusion...p87 References...p88

    [1] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-uW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications,” IEEE Journal of Solid–State Circuits, vol. 47, no. 11, pp. 2783–2795, 2012.
    [2] C.-C. Liu and et al., “A 10-bit 100-MS/s 1.13-mW SAR ADC with binary-scaled error compensation,” IEEE International Solid-State Circuits Conference, 2010.
    [3] C.-H. Chan and et al., “60-db sndr 100–MS/s SAR ADCs with threshold reconfigurable reference error calibration,” JSSC, vol. 52, pp. 2576–2588, 2017.
    [4] D. Zhang, A. Bhide, and A. Alvandpour, “A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-um CMOS for medical implant devices,” IEEE Journal of Solid–State Circuits, vol. 47, no. 7, pp. 1585–1593, 2011.
    [5] D. Gangopadhyay, E. G. Allstot, A. M. R. Dixon, K. Natarajan, S. Gupta, and D. J.Allstot, “Compressed sensing analog front-end for bio-sensor applications,” IEEE
    Journal of Solid–State Circuits, vol. 49, no. 2, pp. 426–438, 2014.
    [6] M. V. Elzakker, E. v. Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 uW at 1 MS/s,” IEEE
    Journal of Solid–State Circuits, vol. 45, no. 5, pp. 1007–1015, 2010.
    [7] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE Journal of Solid–State Circuits, vol. 45, no. 4, pp. 731–740, 2010.
    [8] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200ks/s subranging SAR ADC in 40nm CMOS,” IEEE International Solid-State
    Circuits Conference, pp. 196–198, 2014.
    [9] F. M. Yaul and A. P. Chandrakasan, “A 10 bit SAR ADC with data-dependent energy reduction using LSB-first successive approximation,” IEEE Journal of Solid–State Circuits, vol. 49, no. 12, pp. 2825–2834, 2014.
    [10] Z. Zhu and Y. Liang, “A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-um CMOS for medical implant devices,” IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, vol. 62, no. 9, pp. 2167–2176, 2015.
    [11] S. Liu, Y. Shen, and Z. Zhu, “A 12-bit 10 MS/s SAR ADC with high linearity and energy-efficient switching,” IEEE Transactions on Circuits and Systems I: FundamentalTheory and Applications, vol. 63, no. 10, pp. 1616–1627, 2016.
    [12] P. Harpe, E. Cantatore, and A. v. Roermund, “A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-step,” IEEE Journal of Solid–State Circuits, vol. 48, no. 12, pp. 3001–3018, 2013.
    [13] M. Ahmadi and W. Namgoong, “Comparator power minimization analysis for SAR ADC using multiple comparators,” IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, vol. 62, no. 10, pp. 2369–2379, 2015.
    [14] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5 V 1.1 MS/sec 6.3 fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS,” IEEE Journal of Solid–State Circuits, vol. 47, no. 4, pp. 1022–1030, 2012.
    [15] J. Guerber, H. Venkatram, M. Gande, A. Waters, and U.-K. Moon, “A 10-b ternary SAR ADC with quantization time information utilization,” IEEE Journal of Solid–State Circuits, vol. 47, no. 11, pp. 2604 – 2613, 2012.
    [16] P.-C. Lee, J.-Y. Lin, and C.-C. Hsieh, “A 0.4 V 1.94 fj/conversion-step 10 bit 750 kS/s SAR ADC with input-range-adaptive switching,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 12, pp. 2149 – 2157, 2016.
    [17] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1- μw successive approximation ADC,” Proceedings of the Symposium on VLSI Circuits, pp. 236–237, 2009.
    [18] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE Journal of Solid–State Circuits, vol. 42, no. 4, pp. 739–747, 2007.
    [19] V. Hariprasath, J. Guerber, S. H. Lee, and U. Moon, “Merged capacitor switching based sar adc with highest switching energy efficiency,” IEEE Electronics Letters, vol. 46, no. 9, pp. 620–621, 2010.
    [20] F. Kuttner, “A 1.2-V 10-bit 20-MSample/s non-binary successive approximation ADC in 0.13μm CMOS,” IEEE International Solid-State Circuits Conference, 2002.
    [21] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13um CMOS,” IEEE Journal of Solid–State Circuits, vol. 41, pp. 2269–2680, 2006.
    [22] C.-P. Huang and et al., “Analysis of nonideal behaviors based on INL/DNL plots for SAR ADCs,” Transactions on Instrumentation and Measurement, vol. 65, pp. 1804–1817, 2016.
    [23] B. Razavi, “The bootstrapped switch,” IEEE Solid-State Circuits Magazine, 2015.
    [24] B. Razavi, “The StrongARM latch,” IEEE Solid-State Circuits Magazine, 2015.
    [25] Tobias-Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991.
    [26] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE Journal of Solid–State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
    [27] S. Gupta and et al., “W–2W current steering dac for programming phase change memory,” Workshop on Microelectronics and Electron Devices, 2009.
    [28] J. Jin, Y. Gao, and E. Sanchez-Sinencio, “An energy-efficient time-domain asynchronous 2 b/step SAR ADC with a hybrid R-2R/C-3C DAC structure,” IEEE Journal of Solid–State Circuits, vol. 49, no. 6, pp. 1383–1396, 2014.
    [29] H. Tang, Z. C. Sun, K. W. R. Chew, and L. Siek, “A 1.33uW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 6, pp. 844–856, 2014.
    [30] H. Lee, S. Park, C. Lim, and C. Kim, “A 100-nW 9.1-ENOB 20-ks/s SAR ADC for portable pulse oximeter,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 62, no. 4, pp. 357–361, 2015.
    [31] P. Harikumar, J. JacobWikner, and A. Alvandpour, “A 0.4-V subnanowatt 8-bit 1-kS/s SAR ADC in 65-nm CMOS for wireless sensor applications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 63, no. 8, pp. 743–747, 2016.
    [32] Y. Zhang, E. Bonizzoni, and F. Maloberti, “A 10-b 200-ks/s 250-na Self–Clocked coarse-fine SAR ADC,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 63, no. 10, pp. 924–928, 2016.
    [33] Y. Song, Z. Xue, Y. Xie, S. Fan, and L. Geng, “A 0.6-V 10-bit 200-ks/s fully differential SAR ADC with incremental converting algorithm for energy efficient applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 63, no. 4, pp. 449–458, 2016.
    [34] H. Zhang and et al., “A 0.6v 10-bit 200–kS/s SAR ADC with higher side-reset-and set switching scheme and hybrid CAP-MOS DAC,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 65, pp. 3639–3650, 2018.
    [35] Y.-H. Ou-Yang and et al., “An energy-efficient SAR ADC with event-triggered error correction,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 65, pp. 723–727, 2019.

    無法下載圖示 全文公開日期 2026/01/20 (校內網路)
    全文公開日期 2026/01/20 (校外網路)
    全文公開日期 2026/01/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE