簡易檢索 / 詳目顯示

研究生: 何靜葳
Jhing-Wei Ho
論文名稱: 地下水對以鑽掘樁穩定之土壤邊坡之荷重傳遞因子研究
Study of Groundwater Effect and Load Transfer Factor of Slope Stabilized Using Drilled Shafts
指導教授: 林宏達
Horn-Da Lin
口試委員: 謝佑明
Yo-Ming Hsieh
王建智
Chien-Chih Wang
陳昭維
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 114
中文關鍵詞: 荷重傳遞因子邊坡穩定地下水土拱效應
外文關鍵詞: Load transfer factor, Slope stability, Groundwater, Soil arching
相關次數: 點閱:211下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

邊坡穩定是地工重要的課題之一,而使用鑽掘樁穩定邊坡是可行之穩定工法之一。根據前人研究,將單排鑽掘樁安置於邊坡,兩相鄰之鑽掘樁中間會產生土壤拱效應,使得上邊坡土壤之下滑力傳遞至下邊坡時產生折減,進而降低趨動力。此折減效應可應用荷重傳遞因子來評估,因此邊坡之土拱效應以及荷重傳遞因子是值得深入研究的課題。本研究參考前人研究結果,使用PLAXIS 3D進一步分析地下水對以鑽掘樁穩定邊坡穩定性之影響。分析探討的項目包括水平應力分佈、水平位移、安全係數以及荷重傳遞因子。
綜觀本研究之水平應力分佈、水平位移分佈、安全係數以及荷重傳遞因子,PLAXIS 3D可以得到合理的分析結果。地下水上升對邊坡穩定性及荷重傳遞行為有影響。沒有地下水與地下水位較低(10m)尚未達到滑動面深度時之安全係數皆為1.44,而地下水位較高(21m)接近坡頂達到滑動面深度之安全係為1.16,有明顯下降的趨勢。在地下水上升的情形下,不論安全係數是否有明顯下降的趨勢,分析結果所得之位移量皆會較大。而有地下水情況下,荷重傳遞因子也是隨著安全係數上升而下降,其行為類似於前人之分析結果。有無地下水之鋸齒狀鑽掘樁排列分析結果皆顯示,中間鑽掘樁往上邊坡偏移在某個範圍之內(2D)安全係數會增加,但增量不大。但中間鑽掘樁往下邊坡偏移安全係數會有明顯下降趨勢。


Slope stability is an important topic of geotechnical engineering and using drilled shafts is one of the feasible methods to stabilize the slope. According to previous studies, when a row of drilled shafts are installed in the slope, soil arching will be developed between the drilled shafts, resulting in the reduction of the sliding force. This effect can be evaluated by the load transfer factor; therefore, soil arching and load transfer factor warrant further research. Based on previous results, this study use PLAXIS 3D to investigate the groundwater effect of the slope stabilized using drilled shafts. Analysis and discussion items include horizontal stress, horizontal displacements, safety factor and load transfer factor.
Overall examination of horizontal stress, horizontal displacement, factor of safety and load transfer factor of this study show that PLAXIS 3D can give reasonable analytical results. Rising groundwater will affect both the slope stability and the load transfer behavior. When there is no groundwater and the water table is low (10m) such that it does not reach the sliding surface, the factor of safety is the same as 1.44. When the water table is high (21m) and near the top of the slope safety factor significantly reduces to 1.16. When the groundwater is raised larger displacements are observed no matter whether there is significant change in safety factor or not. For cases with groundwater, the load transfer factors also decrease with increasing safety factor. Study of the zig-zag pile arrangement with and without groundwater show that safety factor may increase slightly if the middle pile is moved upslope of a limited distance (2D). However, if the middle pile is moved downward safety factor may decrease significantly.

論 文 摘 要 I ABSTRACT II 誌謝 IV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與流程 2 第二章 文獻回顧 5 2.1 以鑽掘樁穩定邊坡 5 2.2 以鑽掘樁穩定邊坡之力學機制 7 2.2.1 拱效應現象 7 2.2.2 擋土鑽掘樁引起之土拱效應 10 2.2.3 荷重傳遞因子 13 2.2.4 影響荷重傳遞因子之參數 17 2.3 有限元素法之邊坡穩定分析 19 2.4 地下水位上升對邊坡穩定之影響 22 第三章 荷重傳遞因子特性之數值研究 25 3.1 PLAXIS 3D數值研究分析流程 25 3.1.1 邊坡模型之建立 27 3.1.2 邊坡之基本假設 27 3.1.3邊坡材料參數及邊界條件 28 3.1.4 邊坡有限元素網格建立 32 3.2 邊坡模型之檢核分析 36 3.3 以鑽掘樁穩定之邊坡模型建立 38 3.4 邊坡鑽掘樁周邊土壤之拱效應觀察 39 3.5 荷重傳遞因子之探討 46 3.5.1 荷重傳遞因子之計算 46 3.5.2 荷重傳遞因子之參數研究 50 3.5.3 土壤剪力強度之影響 52 第四章 地下水對邊坡穩定之影響 72 4.1 鋸齒狀排樁之分析 72 4.1.1 鋸齒狀排樁分析條件 73 4.1.2 以鋸齒狀排樁穩定邊坡之邊坡穩定 74 4.2 地下水對鋸齒狀排樁之分析 81 4.2.1地下水對以鋸齒狀排樁之分析條件 81 4.2.2 地下水對以鋸齒狀排樁穩定邊坡之邊坡穩定 82 4.3 地下水對以鑽掘樁穩定邊坡之參數變化之影響 88 4.3.1 地下水對以鑽掘樁穩定邊坡之參數變化分析條件 88 4.3.2地下水對以鑽掘樁穩定邊坡之邊坡穩定 89 第五章 結論與建議 107 5.1 結論 107 5.2建議 109 參考文獻 110

1.吳偉特,「邊坡穩定之分析方法與運用」,兆林出版社,台北,第35-85頁,1982。 

2.李建中,「常用邊坡穩定分析程式之介紹」,地工技術,第7期,第69-73頁,1984。
3.陳榮河,「邊坡穩定之分析方法」,地工技術,第17期,第70-84頁,1987。
4.李錫堤、董家鈞、林銘郎,「小林村災變之地質背景探討」,地工技術,第122期,第87-94頁,2000。
5.陳嬑璇 、林銘郎、鄭富書、朱聖心,「應用地理資訊系統於地震豪雨引致山崩之研究」,地工技術,第90期,第63-72頁,2002。
6.范嘉程、馮道偉,「以有限元素法探討暴雨時邊坡之穩定分析」,地工技術,第95期,第61-74頁,2003。
7.馮正一,「邊坡穩定處理工程規劃設計準則及施工注意事項」-「國道水土保持設施設置準則及注意事項之擬訂」,第6-1~6-33頁,2005。
8.蔡秉欣,「鑽掘樁引致邊坡拱效應之荷重傳遞因子研究」,國立台灣科技大學營建工程系,碩士論文,2011。
9.陳俊定、吳文隆,陳聰海、廖繼仁,「莫拉克災後公路邊坡復建之地工挑戰」,地工技術,第137期,第31-40頁,2013。
10.Bosscher, P. J., and Gray, D.H. ,(1986). “Soil Arching in Sandy Slopes: Journal of Geotechnical Engineering”, ASCE, v. 112, No. 6, pp. 626-644.
11.Fukumoto, Y., (1972). “Study on the behavior of stabilization piles for landslides”, Soils and Foundations, 12(2), pp. 61–73.
12.Getzler, Z., Komornik, A. and Mazurik, A., (1968). “Model study on arching above buried structures.” Journal of the Soil Mechanics and Foundation Division, ASCE, 94(SM5), p 1123-1141.
13.Gudehus, G. and Schwarz, W., (1985). “Stabilization of creeping slopes by dowels” Proc. 11th Int. Conf. on SMFE, San Francisco, 3, 1679-1700.
14.Liang, R. Y., (2002). “Drilled Shaft Foundation for Noise Barrier Walls and Slope Stabilization”, Final Report for Ohio Department of Transportation, Report Number FHWA/OH-2002/038.
15.Liang, R., and Zeng, S., (2002). “Numerical study of soil arching mechanism in drilled shafts for slope stabilization”, Soils and Foundations, Japanese Geotechnical Society, 42(2), pp. 83-92.
16.Liang, R. Y., (2010). “Field Instrumentation, Monitoring of Drilled Shafts for Landslide Stabilization and Development of Pertinent Design Method”, Final Report for Ohio Department of Transportation, Report Number FHWA/OH-2010/134238.
17.Liang, R. Y. and Yamin, M., (2010). “Three Dimensional Finite Element Study of Arching Behavior in Slope/Drilled Shafts System”, International Journal of Numerical and Analytical Methods in Geomechanics, Early Web Publication.
18.Morgenstern, N. R., (1982). “The analysis of wall supports to stabilize slopes, Application of Walls to Landslide Control Problems”,ASCE,19-29
19.Qianjun Xu *, Honglei Yin, Xianfeng Cao, Zhongkui Li., (2009). “A temperature-driven strength reduction method for slope stability analysis” , Mechanics Research Communications 36 (2009) 224–231
20.Rollins, K. M and Rollins, R. L., (1922). “Landslide stabilization using drilled shaft walls ” Ground Movements and Structures, 4, Pentech Press, London, 755-770.
21.Rahardjo, H., Li, X.W., Toll, D.G., Leong, E.C., (2001). “The effect of antecedent rainfall on slope stability”. Geotechnical and Geoen- vironmental Engineering 19, 371–399.
22.Romy Tjuar., (2012). “Study of Load transfer Characteristic of Slope Stabilized Using Drilled Shafts”, National Taiwan University of Science and Technology, Master dissertation.
23.Sommer, H. (1977). “Creeping slope in a stiff clay.”Proc., 9th Int. Conf. on Soil Mechanics and Foundation Engineering, A. A. Balkema,Rotterdam, Netherlands, 113–118.
24.Terzaghi, K., (1943). “Theoretical Soil Mechanics”. Wiley, New York.
25.Tomio Ito, Tomotsu Matsui and Won Pyo Hong (1981). “Design Method for Stabilizing Piles against landside”- One Row of piles, Journal of Japanese Society of Soil Mechanics and Foundation Engineering Vol 121, 22-37
26.Tsaparas, I., Rahardjo, H., Toll, D.G. and Leong E.C., (2002). “Controlling Parameters for Rainfall-Induced Landslides”. Comput. and Geotech., 29: 1-27.
27.Zienkiewicz O C, Humpheson C.,(1975). Lewis R W. Associated and non-associated visco-plasticity in soil mechanics. Geotechnique, 25 (4): 671–689.
28.Zeng, S., and Liang, R. Y., (2002). “Stability analysis of drilled shafts reinforced slope.” Soils Found., 42(2), 93–102.

QR CODE