簡易檢索 / 詳目顯示

研究生: 安妮
MUNA SALEH MOH'D ALGHANANIM
論文名稱: 粉體表面改質對於鈦酸鍶的燒結行為之影響
The Effects of Powder Surface Modification on the Sintering Behavior of SrTiO3
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 施劭儒
Shao-Ju Shih
王丞浩
Chen-Hao Wang
鍾仁傑
Ren-Jei Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 光電效應陶瓷鈦酸鍶表面改質雙氧水醋酸
外文關鍵詞: Electro-optical ceramics, Strontium titanate, Surface modification, Acetic acid, Hydrogen peroxide
相關次數: 點閱:254下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今高科技產業蓬勃時代,光電效應材料已經廣泛應用於日常生活中。目前產業中所使用的光電效應材料,其大部分都具有高濃度的鉛含量。為安全起見及環境考量,進一步研究並開發無鉛光電陶瓷是必要的。鈦酸鍶(SrTiO3)因其具備化學穩定性高、熱穩定性高、光催化活性佳等優異特性,故其可候選為替換材料之一。
本研究主要利用雙氧水(H2O2)的氫氧基(OH-)和醋酸(CH3COOH)的氫氧基與羥基(COO-)等官能基於鈦酸鍶粉體之表面形貌進行改質行為。於無壓環境及不同燒結溫度(1350 ºC、1400 ºC、1450 ºC)下,觀察燒結行為對經表面改質之鈦酸鍶粉體所產生的影響。在此實驗中,分別研究了三種鈦酸鍶燒結樣品,包含純鈦酸鍶、經雙氧水處理之鈦酸鍶以及經醋酸處理之鈦酸鍶,並且觀察與比較燒結粉體和其表面改質的差別。
鈦酸鍶粉體的表面改質不僅是一低成本、高效益的製備方法,其亦可製成具有高密度的光電性能多晶陶瓷材料。進一步研究後發現,經醋酸處理之鈦酸鍶粉體具有最高的相對密度值(99.9%)。而於相同燒結溫度與時間下,未處理之純鈦酸鍶粉體與經雙氧水處理之鈦酸鍶粉體的相對密度值依序為93.1%和81.3%。


Nowadays, almost all electro-optical ceramics contain high concentration of lead. Therefore, for the safety of the environment, lead-free electro optical ceramics must be developed. As a replacement, strontium titanate (SrTiO3) may be an excellent candidate material. In this study, the OH group of both hydrogen peroxide (H2O2) and acetic acid (CH3COOH) as well as the carboxyl group (COO-) of the acetic acid were used to react with the surface of SrTiO3 in order to provide the bonding reaction. Afterwards, SrTiO3 was sintered at different temperatures (1350 ºC to 1450 ºC) by using pressureless sintering technique to complete the bonding and crystallize the structure. Additionally, we studied the differences among the three sintered SrTiO3 samples, un-treated, acetic acid treated and hydrogen peroxide treated SrTiO3. The difference among these sintered powders and their surface modifications were observed and compared.
The surface modification of SrTiO3 powder can provide an inexpensive way to obtain high density polycrystalline ceramics with better electro-optical properties. Acetic acid treated SrTiO3 sintered at 1400 ºC has shown the highest density (99.9%) compared to un-treated SrTiO3 (93.1%) and hydrogen peroxide treated SrTiO3 (81.3%).

中文摘要 I Abstract II Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Electro-optical ceramics 3 2.2 Basic properties of Strontium Titanate (SrTiO3) 10 2.2.1 Crystal Structure of SrTiO3 11 2.2.2 Optical property of SrTiO3 13 2.3 Sintering techniques 16 2.3.1 Hot isostatic pressing 16 2.3.2 Vacuum sintering 18 2.3.3 Spark plasma sintering 18 2.3.4 Pressureless sintering 20 2.4 Motivation 21 Chapter 3 Experimental Procedure 22 3.1 Experimental Materials and Instrumentations 22 3.2 Experimental design 24 3.2.1 SrTiO3 Preparation 24 3.2.2 SrTiO3 Powder Samples Soaking 26 3.2.3 SrTiO3 Bulk Preparation 27 3.3 Materials Characterization 28 3.3.1 X-Ray Diffractometer (XRD) 29 3.3.2 Field Emission Scanning Electron Microscope (FE-SEM) 31 3.3.3 Fourier Transform Infrared Spectroscopy (FTIR) 33 3.3.4 Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) 33 3.3.5 Transmission Electron Microscope (TEM) 34 3.3.6 Archimedes method 35 Chapter 4 Results 37 4.1 SrTiO3 Powder Analysis Results 37 4.2 SrTiO3 Bulk Analysis Results 46 Chapter 5 Discussion 58 5.1 Discussion About SrTiO3 Powders Analysis Results 58 5.2 Discussion About SrTiO3 Bulks Analysis Results 61 Chapter 6 Conclusions 64 Chapter 7 Future Work 66 References 67

1. Pontes, F. M.; Lee, E. J. H.; Leite, E. R.; Longo, E., High dielectric constant of SrTiO3 thin films prepared by chemical process. J. Mater. Sci. 2000, 35, 4783-4787.
2. Malghe, Y. S., Nanosized SrTiO3 powder from oxalate precursor microwave aided synthesis and thermal characterization. J. Therm. Anal. Calorim. 2010, 102, 831-836.
3. Voigts, F.; Damjanovi, T.; Borchardt, G.; Argirusis, C.; Maus-Friedrichs, W., Synthesis and characterization of strontium titanate nanoparticles as potential high temperature oxygen sensor material. J. Nanomater. 2006, 1-6.
4. Siddiqui, J.; Cagin, E.; Chen, D.; Phillips, J., ZnO thin-film transistors with polycrystalline (Ba, Sr) Ti O 3 gate insulators. Applied physics letters 2006, 88, (21), 212903.
5. Scott, J., High-dielectric constant thin films for dynamic random access memories (DRAM). Annual review of materials science 1998, 28, (1), 79-100.
6. Ueno, K.; Sakamoto, W.; Yogo, T.; Hirano, S.-i., Processing of novel strontium titanate-based thin-film varistors by chemical solution deposition. Journal of the American Ceramic Society 2003, 86, (1), 99-104.
7. Wu, Y. J.; Li, J.; Kimura, R.; Uekawa, N.; Kakegawa, K., Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics. J. Am. Ceram. Soc. 2005, 88, (12), 3327-3331.
8. Boccaccini, A. R.; Silva, D. D., Industrial developments in the field of optically transparent inorganic materials: a survey of recent patents. Recent Pat. Mater. Sci. 2008, 1, (1), 56-73.
9. Haertling, G. H.; Land, C., Hot‐pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 1971, 54, (1), 1-11.
10. Tschöpe, A., Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 2001, 139, (3–4), 267-280.
11. Klaytae, T.; Panthong, P.; Onjun, Y.; Thountom, S., The Effects of Sintering Temperature on the Physical and Electrical Properties of SrTiO3 Ceramics Prepared Via Sol-Gel Combustion Method. Ferroelectrics 2016, 491, (1), 79-86.
12. Haertling, G. H.; LAND, C. E., Hot‐Pressed (Pb, La)(Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications. Journal of the American Ceramic Society 1971, 54, (1), 1-11.
13. Aman, Y.; Garnier, V.; Djurado, E., Influence of green state processes on the sintering behaviour and the subsequent optical properties of spark plasma sintered alumina. Journal of the European Ceramic Society 2009, 29, (16), 3363-3370.
14. Chaim, R.; Marder, R.; Estournes, C., Optically transparent ceramics by spark plasma sintering of oxide nanoparticles. Scripta Materialia 2010, 63, (2), 211-214.
15. Liu, J.; Shen, Z.; Yao, W.; Zhao, Y.; Mukherjee, A. K., Visible and infrared transparency in lead-free bulk BaTiO3 and SrTiO3 nanoceramics. Nanotechnology 2010, 21, (7), 075706.
16. Stefanik, T.; Gentilman, R.; Hogan, P. In Nanocomposite optical ceramics for infrared windows and domes, Defense and Security Symposium, 2007; International Society for Optics and Photonics: pp 65450A-65450A-5.
17. Jiang, H.; Zou, Y.; Chen, Q.; Li, K.; Zhang, R.; Wang, Y.; Ming, H.; Zheng, Z. In Transparent electro-optic ceramics and devices, Photonics Asia 2004, 2005; International Society for Optics and Photonics: pp 380-394.
18. Li, K.; Wang, Q., Electro-optic ceramic material and device. Google Patents: 2003.
19. Li, K. K.; Wang, Q., Electro-optic ceramic material and device. US patent 2004, 6746618.
20. Ruan, W.; Li, G.; Zeng, J.; Bian, J.; Kamzina, L. S.; Zeng, H.; Zheng, L.; Ding, A., Large Electro‐Optic Effect in La‐Doped 0.75 Pb (Mg1/3Nb2/3) O3–0.25 PbTiO3 Transparent Ceramic by Two‐Stage Sintering. Journal of the American Ceramic Society 2010, 93, (8), 2128-2131.
21. Barad, Y.; Lu, Y.; Cheng, Z.-Y.; Park, S.-E.; Zhang, Q., Composition, temperature, and crystal orientation dependence of the linear electro-optic properties of Pb (Zn 1/3 Nb 2/3) O 3–PbTiO 3 single crystals. Applied Physics Letters 2000, 77, (9), 1247-1249.
22. Koonce, C.; Cohen, M. L.; Schooley, J.; Hosler, W.; Pfeiffer, E., Superconducting Transition Temperatures of Semiconducting SrTi O 3. Physical Review 1967, 163, (2), 380.
23. Bandura, A. V.; Evarestov, R. A.; Zhukovskii, Y. F., Energetic stability and photocatalytic activity of SrTiO3 nanowires: ab initio simulations. Rsc Advances 2015, 5, (31), 24115-24125.
24. Marques, A. C. L. S., Advanced Si pad detector development and SrTio3 studies by emission channeling and hyperfine interaction experiments. 2009.
25. Weber, M.; Allen, R., Nuclear magnetic resonance study of the phase transition in strontium titanate. The Journal of Chemical Physics 1963, 38, (3), 726-729.
26. Leapman, R.; Grunes, L.; Fejes, P., Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Physical Review B 1982, 26, (2), 614.
27. Bell, R.; Rupprecht, G., Elastic constants of strontium titanate. Physical Review 1963, 129, (1), 90.
28. Cho, S. G.; Johnson, P. F., Evolution of the microstructure of undoped and Nb-doped SrTiO3. Journal of Materials Science 1994, 29, (18), 4866-4874.
29. Liou, Y.-C.; Wu, C.-T.; Chung, T.-C., Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process. Journal of Materials Science 2007, 42, (10), 3580-3587.
30. Bae, S. I.; Baik, S., Sintering and grain growth of ultrapure alumina. Journal of Materials Science 1993, 28, (15), 4197-4204.
31. Babilo, P.; Haile, S. M., Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. Journal of the American Ceramic Society 2005, 88, (9), 2362-2368.
32. MacLaren, I.; Cannon, R. M.; Gulgun, M. A.; Voytovych, R.; Popescu-Pogrion, N.; Scheu, C.; Taffner, U.; Ruhle, M., Abnormal grain growth in alumina: Synergistic effects of yttria and silica. Journal of the American Ceramic Society 2003, 86, (4), 650-659.
33. Peng, C.-J.; Chiang, Y.-M., Grain growth in donor-doped SrTiO3. Journal of Materials Research 1990, 5, (06), 1237-1245.
34. Chung, S.-Y.; Kang, S.-J. L., Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3. Acta Materialia 2003, 51, (8), 2345-2354.
35. Chung, S.-Y.; Kang, S.-J. L., Effect of dislocations on grain growth in strontium titanate. Journal of the American Ceramic Society 2000, 83, (11), 2828-2832.
36. Sano, T.; Saylor, D. M.; Rohrer, G. S., Surface energy anisotropy of SrTiO3 at 1400°C in air. Journal of the American Ceramic Society 2003, 86, (11), 1933-1939.
37. Sano, T.; Kim, C.-S.; Rohrer, G. S., Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid. Journal of the American Ceramic Society 2005, 88, (4), 993-996.
38. Rheinheimer, W.; Bäurer, M.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J., Growth of single crystalline seeds into polycrystalline strontium titanate: Anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries. Acta Materialia 2015, 95, 111-123.
39. Rheinheimer, W.; Bäurer, M.; Chien, H.; Rohrer, G. S.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J., The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Materialia 2015, 82, 32-40.
40. Petit, J.; Dethare, P.; Sergent, A.; Marino, R.; Ritti, M.-H.; Landais, S.; Lunel, J.-L.; Trombert, S., Sintering of α-alumina for highly transparent ceramic applications. Journal of the European Ceramic Society 2011, 31, (11), 1957-1963.
41. Sutorik, A. C.; Gilde, G.; Swab, J. J.; Cooper, C.; Gamble, R.; Shanholtz, E., Transparent Solid Solution Magnesium Aluminate Spinel Polycrystalline Ceramic with the Alumina‐Rich Composition MgO· 1.2 Al2O3. Journal of the American Ceramic Society 2012, 95, (2), 636-643.
42. Huang, Y.; Jiang, D.; Zhang, J.; Lin, Q., Fabrication of Transparent Lanthanum‐Doped Yttria Ceramics by Combination of Two‐Step Sintering and Vacuum Sintering. Journal of the American Ceramic Society 2009, 92, (12), 2883-2887.
43. Wang, Y.; Lu, B.; Sun, X.; Sun, T.; Xu, H., Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Advances in Applied Ceramics 2011, 110, (2), 95-98.
44. An, L.; Ito, A.; Goto, T., Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering. Journal of the European Ceramic Society 2011, 31, (9), 1597-1602.
45. Kim, B.-N.; Hiraga, K.; Morita, K.; Yoshida, H., Spark plasma sintering of transparent alumina. Scripta Materialia 2007, 57, (7), 607-610.
46. Gu, Y.; Loh, N.; Khor, K.; Tor, S.; Cheang, P., Spark plasma sintering of hydroxyapatite powders. Biomaterials 2002, 23, (1), 37-43.
47. Stuer, M.; Zhao, Z.; Aschauer, U.; Bowen, P., Transparent polycrystalline alumina using spark plasma sintering: effect of Mg, Y and La doping. Journal of the European Ceramic Society 2010, 30, (6), 1335-1343.
48. Evans, J., Pressureless Sintering of Boron Carbide. In Department of Materials Science and Engineering, Imperial College London: 2014.
49. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88, (605), 428-438.
50. Martin, M. C.; Mecartney, M. L., Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 2003, 161, (1), 67-79.
51. Thompson, A. W., Calculation of true volume grain diameter. Metallography 1972, 5, (4), 366-369.
52. Darwish, A.; Badr, Y.; El Shaarawy, M.; Shash, N.; Battisha, I., Influence of the Nd 3+ ions content on the FTIR and the visible up-conversion luminescence properties of nano-structure BaTiO 3, prepared by sol–gel technique. Journal of Alloys and Compounds 2010, 489, (2), 451-455.
53. Kim, W.; Veriansyah, B.; Kim, J.; Oh, S., Formation of titanium hydroxide nanoparticles in supercritical carbon dioxide. Journal of Ceramic Processing Research 2008, 9, (1), 88.
54. Li, Y.; Kimura, Y.; Arikawa, T.; Wang-Otomo, Z.-Y.; Ohno, T., ATR–FTIR Detection of Metal-Sensitive Structural Changes in the Light-Harvesting 1 Reaction Center Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2013, 52, (50), 9001-9008.
55. Sulaeman, U.; Yin, S.; Sato, T., Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of SrTiO 3. Applied Catalysis B: Environmental 2011, 102, (1), 286-290.
56. Ho, T.-H.; Chang, S.-J.; Li, C.-C., Effect of surface hydroxyl groups on the dispersion of ceramic powders. Materials Chemistry and Physics 2016, 172, 1-5.
57. Dong, L.; Shi, H.; Cheng, K.; Wang, Q.; Weng, W.; Han, W., Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research 2014, 7, (9), 1311-1318.
58. Limaye, M. V.; Singh, S. B.; Date, S. K.; Kothari, D.; Reddy, V. R.; Gupta, A.; Sathe, V.; Choudhary, R. J.; Kulkarni, S. K., High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. The Journal of Physical Chemistry B 2009, 113, (27), 9070-9076.
59. Li, H.; Yin, S.; Wang, Y.; Kobayashi, M.; Tezuka, S.; Kakihana, M.; Sato, T., Effect of carboxyl group on the visible-light photocatalytic activity of SrTiO3 nanoparticles. Research on Chemical Intermediates 2013, 39, (4), 1615-1621.
60. Zhang, J.; Ebbens, S.; Chen, X.; Jin, Z.; Luk, S.; Madden, C.; Patel, N.; Roberts, C. J., Determination of the surface free energy of crystalline and amorphous lactose by atomic force microscopy adhesion measurement. Pharmaceutical research 2006, 23, (2), 401-407.
61. Rheinheimer, W.; Hoffmann, M. J., Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures. Journal of materials science 2016, 51, (4), 1756-1765.
62. Baeurer, M.; Kungl, H.; Hoffmann, M. J., Influence of Sr/Ti Stoichiometry on the Densification Behavior of Strontium Titanate. Journal of the American Ceramic Society 2009, 92, (3), 601-606.
63. Abrantes, J. C. C.; Labrincha, J. A.; Frade, J. R., Behavior of strontium titanate ceramics in reducing conditions suggesting enhanced conductivity along grain contacts. Journal of the European Ceramic Society 2002, 22, (9–10), 1683-1691.
64. Petzelt, J.; Ostapchuk, T.; Gregora, I.; Rychetsky, I.; Hoffmann-Eifert, S.; Pronin, A. V.; Yuzyuk, Y.; Gorshunov, B. P.; Kamba, S.; Bovtun, V.; Pokorny, J.; Savinov, M.; Porokhonskyy, V.; Rafaja, D.; Vanek, P.; Almeida, A.; Chaves, M. R.; Volkov, A. A.; Dressel, M.; Waser, R., Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries. Physical Review B 2001, 64, (18).
65. Kao, C.-F.; Yang, W.-D., Preparation and electrical characterisation of strontium titanate ceramic from titanyl acylate precursor in strong alkaline solution. Ceramics International 1996, 22, (1), 57-66.

QR CODE