簡易檢索 / 詳目顯示

研究生: 杜長耕
Charng-Gan Tu
論文名稱: 雙量子井結構之光積體化元件設計與製作
Design and Fabrication of Photonic Integrated Devices with Dual Quantum Well Structure
指導教授: 李三良
San-Liang Lee
口試委員: 邱逸仁
Yi-Jen Chiu
劉政光
Cheng-Kuang Liu
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 光積體化元件雙量子井結構半導體光放大器電致吸收調變器
外文關鍵詞: dual-quantum well structure, photonic integrated devices, semiconductor optical amplifier, electroabsorption modulator
相關次數: 點閱:199下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要之研究為利用雙量子結構分別設計與製作電致吸收調變器結合半導體雷射及反射式電致吸收調變器結合半導體光放大器之光積體化元件,使其分別能運用在光纖通訊系統中的頭端及用戶端。主動層材料利用兩組具壓縮應力的磷砷化銦鎵(InGaAsP)量子井以提供不同積體化元件內不同區域所需,其發光及調變波段皆設計在1.56~1.57 um附近。本論文亦以模擬軟體模擬與驗證所設計之雙量子井結構的材料增益係數、吸收係數等重要特性。而模擬雙量子井結構中,增益用及調變用量子井之光侷限因子分別為0.0413及0.0855,內部耦合效率約為85%。再以模擬結果對元件長度進行分析,目標為設計出高信號明滅比(>10 dB)且高操作頻寬(>10 GHz)的光放大調變器(Amplified Modulator)及電致吸收調變雷射(Electroabsorption Modulated Laser)。
    實驗成果方面,本論文成功製作出監控法布里-比洛雷射、監控電致吸收調變器及光放大調變器。監控法布里-比洛雷射之臨限電流約為30 mA,接觸阻抗介於10至20 Ω之間;監控電致吸收調變器最佳調變波段介於1.56至1.58 um之間,弛張震盪頻率約為5.4 GHz。藉由量測監控元件,可得到雙量子井結構磊晶片的內部損耗、內部量子效率、特徵溫度及最佳調變波段等資訊。光積體化元件中,利用離子佈植技術所形成之電性隔離阻值大於1 MΩ,符合光積體化元件應用所需。未端面鍍膜的光放大調變器,其最佳操作波段約為1.575 um,光信號明滅比可達11 dB。


    We have designed and fabricated electroabsorption modulator (EAM) integrated semiconductor lasers and reflective EAM integrated semiconductor optical amplifiers (amplified modulator) on single chip by utilizing the dual-quantum well (DQW) platform. These optoelectronic devices can be used as the light source in optical line terminal (OLT) and optical network unit (ONU) of optical fiber communication system. The active layers contain two set of compressive strained InGaAsP multi-quantum wells (MQWs) with different composition to provide different energy bandgap for different regions in the integrated devices. The emission and modulation wavelength band of two MQW sets were designed to be around 1.56 to 1.57 um. The optical confinement factors of MQWs for gain and modulation in DQWs were simulated to be 0.0413 and 0.0855, respectively. The coupling efficiency between gain and modulation region was about 85%. These results were used to analyze and design the device length. The purpose of this thesis was to design amplified modulators and electroabsorption modulated lasers (EML) with a high extinction ratio (>10 dB) and a high operation bandwidth (> 10 GHz).
    The monitoring FP lasers, monitoring EAMs, and amplified modulators were successfully fabricated. For monitoring FP lasers, measured threshold current and contact resistance were about 30 mA and 10 to 20 Ω, respectively. For monitoring EAMs, measured modulation wavelength band was between 1.56 and 1.58 um. Measured relaxation frequency of monitoring EAM was about 5.4 GHz. Internal loss, internal quantum efficiency and characteristic temperature of DQW material were also derived. We have achieved a superior electrical isolation with larger than 1MΩ electrical resistance between gain and modulation region using ion implantation scheme. The optical signal extinction ratio of cleaved-cleaved amplified modulator reached 11 dB. We believe that higher extinction ratio can be achieved in high-reflection and anti-reflection coated amplified modulators.

    中文摘要 i Abstract iii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xii 第一章 導論 1 1-1 電致吸收調變雷射(Electroabsorption Modulated Laser) 2 1-2 光放大調變器(Amplified Modulator) 4 1-3 研究方向 6 1-4 論文架構 7 第二章 元件理論與製程技術簡介 8 2-1 半導體光放大器的原理與簡介 8 2-1-1 半導體光放大器工作原理 8 2-1-2 半導體光放大器的增益與頻寬 10 2-1-3 半導體光放大器的增益飽和 13 2-1-4 半導體光放大器的雜訊 14 2-1-5 改善半導體光放大器特性的方法 15 2-2 分佈反饋式雷射的原理與簡介 17 2-3 電致吸收調變器的原理與簡介 19 2-3-1 法蘭茲凱爾帝希效應(Franz-Keldysh Effect) 20 2-3-2 量子侷限史塔克效應(Quantum-Confined Stark Effect) 21 2-3-3 電致吸收調變器量子井設計參數與特性的關係 25 2-4 光積體化元件製造技術簡介 25 2-4-2 雙量子井結構 27 2-4-3 對接再磊晶法 28 2-4-4 量子井混合 29 2-5 降低反射率技術簡介 34 2-5-1 抗反射鍍膜 34 2-5-2 傾斜波導 35 2-5-3 彎曲波導 36 2-6 電性隔離技術簡介 37 第三章 元件模擬與設計 39 3-1 簡介及模擬軟體 39 3-2 雙量子井結構主動層材料特性模擬 40 3-2-1 材料增益 42 3-2-2 材料吸收 44 3-3 元件幾何結構與特性分析 45 3-3-1 元件幾何結構與光場強度分佈 45 3-3-2 光侷限因子及光耦合效率 46 3-4 元件長度設計 46 3-4-1 電致吸收調變器長度 47 3-4-2 半導體光放大器長度 49 3-4-3 彎曲波導長度 51 3-4-4 整體元件效能估算 51 3-4-5 元件長度組合之設計 54 3-5 元件特性模擬 54 3-5-1 法布里-比洛雷射特性模擬 55 3-5-2 半導體光放大器特性模擬 57 3-5-3 分佈反饋式雷射特性模擬 59 第四章 元件製程 62 4-1 光罩設計 63 4-2 製程流程 64 4-2-1 光放大調變器及電致吸收調變雷射製程 64 4-2-2 寬區域雷射製程 76 4-3 製程結果 76 4-4 製程討論 79 第五章 元件量測 81 5-1 監控元件量測 81 5-1-1 發光功率-電流-電壓特性量測 81 5-1-2 光譜量測 86 5-1-3 吸收光電流量測 88 5-1-4 弛張震盪頻率量測 90 5-2 未端面鍍膜之光放大調變器量測 92 5-2-1 電性隔離阻值量測 92 5-2-2 光譜量測 93 第六章 結論 97 6-1 成果與討論 97 6-2 未來研究方向 98 參考文獻 100 作者簡介 105

    [1] J. W. Raring and L. A. Coldren, “40Gb/s Widely Tunable Transcievers,” IEEE Journal of Slected Topic in Quantum Electronics, Vol. 13, No. 1, January, (2007)。
    [2] T. L. Koch and J. Bowers, “Nature of Wavelength Chirping in Directly Modulated Semiconductor Lasers,” IEEE Electronics Letters, Vol. 20, pp. 1038-1040, (1984)。
    [3] S. Zhang, “Traveling-wave Electro-absorption Modulators,” University of California, Santa Barbara, Ph. D. Dissertation, (1999)。
    [4] A. Ramdane, F. Devaux, N. Souli, D.Delprat, A. Ougazzaden, Bagneux CNET, “ Monolithic integration of multiple-quantum-well lasers and modulators for high-speed transmission,” IEEE Journal of Slected Topic in Quantum Electronics, Vol. 2, No. 2, June (1996)。
    [5] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, H. Takeuchi, “Wide bandwidth of over 50GHz travellingwave electrode electroabsorption modulator integrated DFB lasers,” IEEE Electronics Letters, Vol. 37, No. 5, pp. 299-300, (2001)。
    [6] H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Mural, K. Yamada, H. Wada, “EAM-Integrated DFB Laser Modules With More Than 40-GHz Bandwidth,” IEEE Photonics Technology Letters, Vol. 13, No.9 , pp. 954-956, (2001)。
    [7] B. Stegmueller, E. Baur, M. Kicherer, ” 15-GHz Modulation Performance of Integrated DFB Laser Diode EA Modulator With Identical Multiple Quantum Well Double-Stack Active Layer,” IEEE Photonics Technology Letters, Vol. 14, No. 12, pp. 1647-1649, (2002)。
    [8] M. Tamura, T. Yamanaka, H. Fukano, Y. Akage, Y. Kondo, T. Saitoh, “High speed electroabsorption modulators using ruthenium-doped SI-InP: impact of interdiffusion-free burying technology on E/O modulation characteristics,” International Conference on Indium Phosphide and Related Materials, pp. 491-494, (2003)。
    [9] P. Gerlach, M. Peschke, B. K. Saravanan, T. Knoedl, C. Hanke, B. Stegmueller, R. Michalzik, “40 Gbit/s operation of laser-integrated electroabsorption modulator using identical InGaAlAs quantum wells,” International Conference on Indium Phosphide and Related Materals, pp. 554-557, (2005)。
    [10] Lianping Hou, Hongliang Zhu, Qiang Kan, Ying Ding, Baojun Wang, Fan Zhou, Wei Wang, “1.55-μm ridge DFB laser and electroabsorption Modulator integrated with buried-ridge-stripe dual-waveguide spot-size converter output,” IEEE Photonics Technology Letters, Vol. 18, No. 1, pp. 235-237, (2006)。
    [11] Y. Miyazaki, T. Yamatoya, K. Matsumoto, K. Kuramoto, K. Shibata, T. Aoyagi, T. Ishikawa, “High-power ultralow-chirp 10-Gb/s electroabsorption modulator integrated laser with ultrashort photocarrier lifetime,” IEEE Journal of Quantum Electronics, Vol. 42, No. 4, pp. 357-362, April, (2006)。
    [12] Q. Zhao, J.Q. Pan, J. Zhang, B.X. Li, F. Zhou, B.J. Wang, L.F. Wang, J. Bian, L.J. Zhao and W. Wang, “Monolithic integration of electroabsorption modulator and DFB laser for 10-Gb/s transmission,” Optics Communications, Vol. 260, No. 2, pp. 666-669, (2006)。
    [13] H. Fukano, T. Yamanaka, M. Tamura, Y. Kondo, “Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” Journal of Lightwave Technology, Vol. 24, No. 5, pp. 2219-2224, (2006)。
    [14] J. S. Choe, Y. H. Kwon, J. S. Sim, S.B. Kim, “40 Gbps electroabsorption modulated DFB laser with tilted facet formed by dry etching,” Semiconductor Science and Technology, Vol. 22, No. 7, pp. 267-270, (2007)。
    [15] H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, H. Yasaka, “Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage,” IEEE Journal of Slected Topic in Quantum Electronics, Vol. 13, No. 5, pp. 1129-1134, (2007)。
    [16] Changzheng Sun, Bing Xiong, Jian Wang, Pengfei Cai, Jianming Xu, Jin Huang, He Yuan, Qiwei Zhou, Yi Luo, “Fabrication and Packaging of 40-Gb/s AlGaInAs Multiple-Quantum-Well Electroabsorption Modulated Lasers Based on Identical Epitaxial Layer Scheme,” Journal of Lightwave Technology, Vol. 26, No. 11, pp. 1464-1471, (2008)。
    [17] Yuanbing Cheng, Jiaoqing Pan, Yang Wang, Fan Zhou, Baojun Wang, Lingjuan Zhao, Hongliang Zhu, Wei Wang, “40-Gb/s Low Chirp Electroabsorption Modulator Integrated With DFB Laser,” IEEE Photonics Technology Letters, Vol. 21, No. 6, pp. 356-358, (2009)。
    [18] N. Dupuis, J. Decobert, C. Jany, F. Alexandre, A. Garreau, R. Brenot, N. Lagay, F. Martin, D. Carpentier, J. Landreau, F. Pommereau, F. Poingt, C. Kazmierski, “Selective area growth engineering for 80nm spectral range AlGaInAs 10Gbit/s remote amplified modulator,” International Conference on Indium Phosphide and Related Materals, pp. 1-3, (2008)。
    [19] Fang-Zheng Lin, Tsu-Hsiu Wu, Yi-Jen Chiu, “New approach on monolithically integration of semiconductor optical amplifiers and electroabsorption modulators by chain structure,” Joint Conference of the OECC/ACOFT, pp. 1-2, (2008)。
    [20] S. Shimada, H. Ishio, Optical Amplifiers and their Applications, NY:Wiley, Ch.2, (1994)。
    [21] Y. Yamamoto, Coherence Amplification and Quantum Effects in Semiconductor Lasers, NY:Wiley, Ch. 7, (1991)。
    [22] M. Yoshino, K. Inoue, “Improvement of Saturation Output Power in a Semiconductor Laser Amplifier through Pumping Light Injection,” IEEE Photonics Technology Letters, Vol. 8, No.1, pp. 58-59, (1996)。
    [23] M. A. Dupertuis, J. L. Pleumeekers, T. P. Hessler, P. E. Selbermann, B. Deveaud, B. Dagens, J. Y. Emery, “Extremely fast high-gain and low-current SOA by optical speed-up at transparency,” IEEE Photonics Technology Letters, Vol. 12, No. 11, pp. 1453-1455, (2000)。
    [24] D. Wolfson, “Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multi-wavelength optical networks,” IEEE Photonics Technology Letters, Vol. 11, No. 11, pp. 1494-1496, (1999)。
    [25] S. O. Kasap, Optoelectronics and Photonics Principles and Praticles, Pearson, Ch. 4, (1999)。
    [26] G. L. Li, P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” Journal of Lightwave Technology, Vol. 21, No. 9, pp. 2204-2206, (2003)。
    [27] M. N. Sysak, “Monolithically Integrated Wavelength Converters Using a Dual Quantum Well Integration Platform,” University of California, Santa Barbara, Ph. D. Dissertation, (2005)。
    [28] I. P. Kaminow, G. Eisenstein, L. W. Stulz, “Measurement of the model reflectivity of an antireflection coating on a superluminescent diode,” IEEE Journal of Quantum Electronics, Vol. 19, No. 4, pp. 493-495, (1983)。
    [29] S. R. Joseph, J. Hawkins, C. E. Zah, M. Serafin, T. P. Lee, “The tilted waveguide semiconductor laser amplifier,” Journal of Applied Physics, Vol. 64, No. 4, pp. 2240-2242, (1988)。
    [30] V. Subramaniam, G. N. DeBrabander, “Measurement of mode field profiles and bending and transmission losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997, (1997)。
    [31] R. A. Salvatore, R. T. Sahara, M. A. Bock, I. Libenzon, ”Electroabsorption Modulated Laser for Long Transmission Spans,” IEEE Journal of Quantum Electronics, Vol. 5, No. 5, pp. 464-476, (2002)。
    [32] 陳家銘,「設計製作應用於光閘開關之增益箝制半導體光放大器」,碩士論文,國立台灣科技大學,台北 (2005)。
    [33] L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley, Ch. 2, (1995)。

    QR CODE