簡易檢索 / 詳目顯示

研究生: 陳俊宇
JYUN-YU CHEN
論文名稱: 光電汙泥中金屬釋放及萃取行為
Extraction and release behaviors of some metals in TFT-LCD sludge
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 李篤中
Duu-Jong Lee
陳嘉明
Jia-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 64
中文關鍵詞: 生物有效性酸鹼值稀有金屬氧化還原電位釋放行為汙泥薄膜液晶顯示器
外文關鍵詞: bioavailability, pH, rare metals, redox potential, release behavior, sludge, TFT-LCD
相關次數: 點閱:232下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜液晶顯示器工業所產生汙泥中的稀有元素可能會造成環境危害。薄膜液晶顯示器無機汙泥中所包含如銦、鉬、鍶、鉭等稀有元素,所以此研究評估藉由氧化還原電位和酸鹼值對稀有元素影響還有其生物有效性。利用不同萃取劑如氯化鈣、硝酸鈉、硝酸銨、乙酸銨等對三種汙泥樣品進行生物有效性分析。分析結果顯示出銦和鉬在薄膜液晶顯示器汙泥中是低生物有效性,銦則是最具有可移動性的元素。
    氧化還原電位和酸鹼值實驗結果顯現出銦不管在酸性或鹼性還是有氧或厭氧的環境下都是具有低移動性的性質。鍶在酸性及有氧的環境下,鍶的釋放率會隨著氧化還原電位增加而遞增,但是在鹼性和厭氧的環境下會呈現出低移動性。在鹼性和厭氧的環境下,鉬的釋放率會先隨著氧化還原電位減少而遞減至氧化還原電位為六十毫伏特然後隨著氧化還原電位減少而遞增,在酸性及有氧的環境下呈現出低移動性。鉭在氧化還原電位和酸鹼值實驗以及生物有效性分析中,都是呈現出低可利用性,因為鉭在薄膜液晶顯示器汙泥的總金屬含量太低。


    Rare metals in sludge from thin film transistor liquid crystal display (TFT-LCD) industry may pose risks to the environment. This study investigated the effect of redox/pH and bioavailability for rare metals , such as In, Mo, Sr, Ta in TFT-LCD inorganic sludge. Three sludge samples were extracted with 0.01M CaCl2, 0.1M NaNO3, 1M NH4NO3, and 1M NH4Ac for assessing the bioavailability of rare metals. The bioavailability analysis results show that Mo and Sr were non-bioavailable, and In wa the most mobile one in TFT-LCD sludge.
    The result of Eh/pH experiment revealed that In was immobile under acidic, alkaline, aerobic, and anaerobic condition in TFT-sludge. In addition, released percentage of Sr increased with increasing Eh when under acidic and aerobic condition, but Sr was immobile under alkaline and anaerobic condition. Under alkaline and anaerobic condition, the released percentage of Mo initially decreased at 60 mV and then increased when redox potential became more reducing, and was immobile under acidic and aerobic condition. Tantalum had a low availability in Eh/pH experiment and bioavailability analysis because Ta total metal content is so low.

    Abstract I 中文摘要 II CONTENTS III LIST OF TABLES V LIST OF FIGURES VI Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2 Literature Review 3 2.1 TFT-LCD industry 3 2.1.1 TFT-LCD waste sludge and water 4 2.1.2Rare metals in TFT-LCD industry 5 2.2 Bioavailability 9 2.3 The effect on redox/pH status for released rare metals of sludge 12 Chapter 3 Materials and Methods 13 3.1 Source of the TFT-LCD sludge 13 3.2 Materials and reagents 13 3.3 Equipments and apparatus 15 3.3 Experimental procedures and methods 17 3.3.1 Experimental procedures 17 3.3.2 Pretreatment of TFT-LCD sludge 18 3.3.3 Experimental methods 20 Chapter 4 Results and Discussion 25 4.1 Total metal content 25 4.2 Bioavailability 27 4.3 Eh/pH status for released raremetals result 35 Chapter 5 Conclusions and Recommendations 48 5.1 Conclusions 48 5.2 Suggestions 50 Reference 51 Appendix A 60

    Abdel-Motaleb, I., Shetty, N., Leedy, K.,Cortez, R. (2011). Investigation of the drain current shift in ZnO thin film transistors. Journal of Applied Physics, 109(1), art. no. 014503.
    Adamo, P., Dudka, S., Wilson, M.J.,McHardy, W.J. (1996). Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environmental Pollution, 91(1), pp. 11-19.

    Babel, S. and del Mundo Dacera, D. (2006). Heavy metal removal from contaminated sludge for land application: A review. Waste Management, 26(9), pp. 988-1004.

    Bibak, A., Borggaard, O.K. (1994). Molybdenum adsorption by aluminum and iron oxides and humic acid. Soil Science, 158 (5), pp. 323–328.

    Bobyn, J.D., Stackpool, G.J., Hacking, S.A., Tanzer, M., Krygier, J.J. (1999). Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. Journal of Bone and Joint Surgery - Series B 81(5) , pp. 907-914.

    Buekers, J., Mertens, J., Smolders, E. (2010). Toxicity of the molybdate anion in soil is partially explained by effects of the accompanying cation or by soil pH. Environmental Toxicology and Chemistry , 29(6), pp. 1274-1278.

    Chan, C.-H., Zou, Y.-T., Liu, T.-K.,Wang, H.-W., Lin, S.-C. (2012). The development of an inspection system for indium tin oxide circuits. Measurement Science and Technology, 23(8), art. no. 085902.

    Choi, S., O’Day, P.A., Rivera, N.A., Mueller, K.T., Vairavamurthy, M.A., Seraphin, S.,Chorover, J., (2006). Strontium speciation during reaction of kaolinite with
    simulated tank-waste leachate: bulk and microfocused EXAFS analysis. Environmental Science and Technology, 40 (8) , pp. 2608-2614.

    Chowdhury, M.J., and Blust, R. (2001). A mechanistic model for the uptake oil waterborne strontium in the common carp (Cyprinus carpio L.) Environmental Science and Technology, 35(4) , pp. 669-675.

    Degryse, F., Smolders, E., Parker, D.R. (2009). Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications - a review. European Journal of Soil Science, 60(4), pp. 590-612.

    Diez-Ortiz, M., Giska, I., Groot, M.,Borgman, E.M., Van Gestel, C.A.M. (2010). Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Chemosphere, 80 (9) , pp. 1036-1043.

    Feng, M.-H., Shan, X.-Q., Zhang, S.,Wen, B. (2005). A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137(2), pp. 231-240.

    Gommy, C., Perdrix, E., Galloo, J.-C.,Guillermo, R. (1998). Metal speciation in soil: Extraction of exchangeable cations from a calcareous soil with a magnesium nitrate solution. International Journal of Environmental Analytical Chemistry, 72(1), pp. 27-45.

    Gupta, A. K. and S. Sinha (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64(1), pp. 161-173.

    Gupta, A. K. and S. Sinha (2007). Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Journal of Hazardous Materials, 149(1), pp. 144-150.

    Helz G R, Miller C V, Charnock J M, Mosselmans J F W, Pattrick R A D, Garner C D,Vaughan D J, (1996). Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60, pp 3631–3642.

    Hoet, P., De Graef, E., Swennen, B.,Seminck, T., Yakoub, Y., Deumer, G.,Haufroid, V., Lison, D. (2012). Occupational exposure to indium: What does biomonitoring tell us? Toxicology Letters, 213(1) , pp. 122-128.

    Homma, T., Ueno, T., Sekizawa, K., Tanaka, A., Hirata, M. (2003). Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. Journal of Occupational Health, 45(3) , pp. 137-139

    Hong, D. and J. F. Wager (2005). Passivation of zinc-tin-oxide thin-film transistors. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 23(6), pp. 25-27.

    Houba, V.J.G., Lexmond, Th.M.,Novozamsky, I., Van Der Lee, J.J. (1996). State of the art and future developments in soil analysis for bioavailability assessment. Science of The Total Environment, 178(1–3), pp. 21-28.

    Hong, D. and J. F. Wager (2005). Passivation of zinc-tin-oxide thin-film transistors. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 23(6), pp. 25-27.

    Hsieh, K.-L. and Y.-S. Lu (2008). Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications, 34(1), pp. 717-724.

    Hund-Rinke, K. and W. Kordel (2003). Underlying issues in bioaccessibility and bioavailability:: experimental methods. Ecotoxicology and Environmental Safety, 56(1), pp. 52-62.

    Jun, S.-I., Rack, P.D., McKnight, T.E.,Melechko, A.V., Simpson, M.L.(2005). Electrical and microstructural characterization of molybdenum tungsten electrodes using a combinatorial thin film sputtering technique. Journal of Applied Physics, 97(5), art. no. 054906.

    List, A., Mitterer, C., Mori, G., Winkler, N., Reinfried, J., Knabl, W.(2009). Oxidation of Sputtered Thin Films of Molybdenum Alloys at Ambient Conditions. 17th Plansee Seminar.

    Lo, S.-F. (2010). Global warming action of Taiwan’s semiconductor/TFT-LCD industries: How does voluntary agreement work in the IT industry? Technology in Society, 32(3), pp. 249-254.

    Maderova, L., Watson, M., Paton, G.I. (2011). Bioavailability and toxicity of copper in soils: Integrating chemical approaches with responses of microbial biosensors. Soil Biology and Biochemistry, 43(6), pp. 1162-1168.

    McBride, M.B., Richards, B.K.,Steenhuis, T. (2004). Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant and Soil, 262(1-2), pp. 71-84.

    McGrath, S.P., Mico, C., Zhao, F.J.,Stroud, J.L., Zhang, H., Fozard, S. (2010). Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values. Environmental Pollution, 158(10), pp. 3085-3094.

    Meers, E., Samson, R., Tack, F.M.G.,Ruttens, A., Vandegehuchte, M.,Vangronsveld, J., Verloo, M.G. (2007). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany, 60(3), pp. 385-396.

    Menzies, N.W., Donn, M.J., Kopittke, P.M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), pp. 121-130.

    Morohashi, T., Sano, T., Harai, K., Yamada, S. (1995). Effects of strontium on calcium metabolism in rats II. Strontium prevents the increased rate of bone turnover in ovariectomized rats. Japanese Journal of Pharmacology, 68(2) , pp. 153-159.

    Naoto Takeno (2005). Atlas of Eh-pH diagrams. Geological Sur-vey of Japan Open File Report.

    Namasivayam, C. and Sangeetha, D. (2006). Removal of molybdate from water by adsorption onto ZnCl 2 activated coir pith carbon.

    Omae, K., Nakano, M., Tanaka, A., Hirata, M., Hamaguchi, T., Chonan, T. (2011). Indium lung-case reports and epidemiology. International Archives of Occupational and Environmental Health, 84 (5) , pp. 471-477.

    Pors Nielsen, S. (2004). The biological role of strontium. Bone, 35(3), pp. 583-588.

    Pueyo, M., Lopez-Sanchez, J.F., Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), pp. 217-226.

    Sahuquillo, A., Rigol, A., Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. TrAC Trends in Analytical Chemistry, 22(3), pp. 152-159.

    Tanaka, A., Hirata, M., Omura, M.,Inoue, N., Ueno, T., Homma, T.,Sekizawa, K. (2002). Pulmonary toxicity of indium-tin oxide and indium phosphide after intratracheal instillations into the Lung of hamsters. Journal of Occupational Health, 44(2) , pp. 99-102.

    Tanaka, A., Hirata, M., Homma, T., Kiyohara, Y. (2010). Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. Journal of Occupational Health, 52(1) , pp. 14-22.

    Tits, J., Wieland, E., Muller, C.J.,Landesman, C., Bradbury, M.H. (2006). Strontium binding by calcium silicate hydrates. Journal of Colloid and Interface Science, 300(1), pp. 78-87.

    Usami, M., Nakajima, M., Mitsunaga, K., Miyajima, A., Sunouchi, M. and Doi, O. (2009). Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos. Reproductive Toxicology, 28(4), pp. 477-488.

    Usuda, K., Kono, K., Dote, T., Watanabe, M., Shimizu, H., Tanimoto, Y. and Yamadori, E. (2007). An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environmental Health and Preventive Medicine, 12(6), pp. 231-237.

    Vig, K., Megharaj, M., Sethunathan, N.,Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8(1), pp. 121-135.

    Vorlicek T P, Kahn M D, Kasuza Y, Helz G R, 2004. Capture of molybdenum in pyriteforming sediments: role of ligandinduced reduction by polysulfides. Geochimica et Cosmochimica Acta, 68, pp. 547– 556.

    Vutova, K., Vassileva, V., Koleva, E., Georgieva, E., Mladenov, G., Mollov, D., Kardjiev, M. (2010). Investigation of electron beam melting and refining of titanium and tantalum scrap. Journal of Materials Processing Technology, 210(8) , pp. 1089-1094.

    Wang, S., Nan, Z., Liu, X., Li, Y., Qin, S.,Ding, H. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152(3–4), pp. 290-295.

    Wallace, S.H., Shaw, S., Morris, K.,Small, J.S., Fuller, A.J., Burke, I.T. (2012). Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for 90Sr mobility at contaminated nuclear sites. Applied Geochemistry, 27(8), pp. 1482-1491.

    Wood, S. A. and I. M. Samson (2006). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28(1), pp. 57-102.

    Xiao, Y.-L., Cai, H.-R., Wang, Y.-H., Meng, F.-Q., Zhang, D.-P. (2010) Pulmonary alveolar proteinosis in an indium-processing worker. Chinese Medical Journal, 123(10) , pp. 1347-1350.

    Yu, S., He, Z.L., Huang, C.Y., Chen, G.C., Calvert, D.V. (2002). Adsorption- desorption behavior of copper at contaminated levels in red soils from China. Journal of Environmental Quality, 31(4), pp. 1129-1136.

    Zeng, L. and C. Y. Cheng (2009). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part I: Metallurgical processes. Hydrometallurgy, 98(1-2), pp. 1-9.

    QR CODE