簡易檢索 / 詳目顯示

研究生: 張宇伶
Yu-Ling Chang
論文名稱: 自組裝超分子複合材料於薄膜分離之應用
Self-Assembling Supramolecular Polymer Composites for Membrane Separation
指導教授: 賴君義
Juin-Yih Lai
鄭智嘉
Chih-Chia Cheng
口試委員: 賴君義
Juin-Yih Lai
謝永堂
Yeong-Tarng Shieh
劉英麟
Ying-Ling Liu
陳建光
Jem-Kun Chen
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 超分子聚合物聚己二酸對苯二甲酸丁二酯氫鍵複合材料薄膜分離
外文關鍵詞: Supramolecular polymer, poly(butylene adipate-co-terephthalate), Hydrogen bond, composites, Membrane separation
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,廢氣以及汙水排放等環境問題日益嚴重,為了解決這些問題,制定有效的策略與方法是地球永續發展的重要課題之一。本論文中,透過在聚己二酸對苯二甲酸丁二酯(PBAT)基質中加入超分子增強劑,成功提出一種新的概念增強疏水性PBAT膜的結構以及物理特性。在此,我們合成出一新型Adenine-terminated Jeffamine親水性高分子(AJ),由於腺嘌呤之間貢獻的互補氫鍵,在固態下表現出獨特的自組裝行為、有序的層狀微觀結構和穩定的熱可逆行為。我們能透過AJ與PBAT混摻得到一個簡單又有效的方法途徑,製備出具有微相分離的複合薄膜,同時改善PBAT的物理性能。複合膜相分離的程度取決於AJ的含量,我們可以輕鬆地藉由添加不同比例的AJ控制複合膜的特性。更重要的是,氣體分離測試的結果表明,PBAT與 2.5 wt% 的AJ複合膜擁有超過 30 Barrer的高CO2滲透率,CO2 /N2選擇率為47;此外,進一步將 AJ 含量增加至 25 wt%,可以觀察到此組成下之複合薄膜具有均勻的孔分佈和結構,使用在油/水混合物分離測試,其通量為4450 (L m-2hr-1bar-1),分離效率高達 99.5%。有鑑於簡單的製造過程、可調控的物理特性以及良好的薄膜分離性能,這個新發現為具有強大氣液分離潛力的多功能高分子複合薄膜提供了一種高效的方法。


In recent years, the environmental problems of exhaust-gas emission and sewage disposal are becoming more serious around the globe. To deal with these environmental issues, it is essential and urgent to develop effective strategies and methods for sustainable development of the earth. In this thesis, a novel conceptual approach to enhance the physical and structural properties of hydrophobic poly(butylene adipate-co-terephthalate) (PBAT) in the thin-film state has been devised by incorporating supramolecular reinforcing agent within the PBAT matrices. Herein, a new hydrophilic adenine-terminated Jeffamine polymer (AJ) has been successfully developed, and exhibited unique self-assembly behavior, well-ordered lamellar microstructure and stable thermoreversible phase transition in the solid state due to the presence of self-complementary hydrogen bonding interactions contributed by adenine moieties. Incorporation of AJ into a PBAT matrix offers a simple and efficient route for obtaining highly phase-separated composite membranes while significantly improving the overall physical properties of the PBAT. Due to the ease of tailoring the AJ content to alter the extent of phase separation within the polymer matrix, the resulting blend membranes can be easily tuned to achieve custom-made
properties. More importantly, gas separation tests revealed that the incorporation of 2.5 wt% AJ with PBAT resulted in a high CO2 permeability of over 30 Barrer, CO2 /N2 selectivity is 47. In addition, further increasing the AJ content to 25 wt%, the resulting membranes with a uniform pore distribution and structure can be observed and showed efficient separation of oil/water mixture. Permeation flux is 4450 (L m-2hr-1bar-1) with high removal of 99.5%. Given the simplicity of the fabrication process, well-tailored physical characteristics and good membrane separation performance, this newly discovered approach provides a highly efficient process for development of multifunctional polymer composite membranes with great potential for gas and liquid separations.

目錄 摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 XI 表目錄 XIV 第一章、 緒論 1 1-1 研究背景 1 1-2 研究動機 3 第二章、 文獻回顧 5 2-1 超分子化學(Supramolecular chemistry) 5 2-1-1 分子自組裝(Self-assembly) 6 2-2 非共價鍵(Noncovalent Bonding) 8 2-2-1 氫鍵 8 2-2-2 π-π作用力 11 2-3 腺嘌呤(Adenine) 13 2-4 聚酯(polyester) 16 2-4-1 聚己二酸對苯二甲酸丁二酯(Poly(butylene adipate-co-terephthalate), PBAT) 18 2-4-2 複合材料(Composite material) 20 2-4-3 PBAT複合材料之應用 20 2-5 薄膜(Membrane) 22 2-5-1 薄膜技術概述 22 2-5-2 氣體分離(Gas separation) 24 2-6 文獻回顧總結 27 第三章、 實驗材料與方法設計 28 3-1 研究設計 28 3-2 實驗藥品 29 3-3 實驗溶劑 32 3-4 實驗儀器與設備參數 35 3-4-1 旋轉塗佈機(Spin Coaters) 35 3-4-2 傅里葉轉換紅外光譜(Fourier transform infrared spectroscopy, FTIR) 35 3-4-3 熱重分析儀(Thermogravimetric analysis, TGA) 36 3-4-4 差示掃描量熱儀(Differential scanning calorimetry, DSC) 36 3-4-5 斜式旋轉濃縮機(Rotary Evaporation) 37 3-4-6 水滴接觸角量測儀 (Water Contact angle) 37 3-4-7 膠體滲透層析儀(Gel Permeation Chromatography, GPC) 38 3-4-8 X-Ray繞射儀 (D2 PHASER X-Ray Powder Diffractometer) 38 3-4-9 液態核磁共振光譜(Nuclear Magnetic Resonance spectrometer, NMR) 39 3-4-10 高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 39 3-4-11 原子力顯微鏡(Atomic Force Microscope, AFM) 40 3-4-12 氣體透過率分析儀(Gas Permeation Analysis, GPA) 41 3-4-13 氣相層析儀(Gas chromatography, GC) 41 3-4-14 基質輔助雷射脫附游離飛行時間式質譜儀(Matrix-assisted laser desorption ionization-time of flight, MALDI-TOF MS) 42 3-4-15 流變儀(Rheometer) 42 3-4-16 拉伸試驗機 43 3-4-17 庫侖卡爾費雪滴定儀(Karl Fischer Titrators, KFT) 43 3-5 實驗合成步驟 44 3-5-1 合成單體前驅物AMA 44 3-5-2 合成AMA-Jeffamine (AJ) 45 3-6 高分子複合薄膜製備 46 第四章、 結果與討論 47 4-1 材料鑑定 47 4-1-1 單體前驅物AMA合成之分析 49 4-1-2 AMA-Jeffamine (AJ)合成之分析 50 4-1-3 高分子材料小角度散射(SAXS)與廣角X-射線繞射(XRD)分析 54 4-1-4 高分子材料熱性質分析 57 4-1-5 高分子材料之流變分析(Rheometer test) 60 4-1-6 高分子材料透過傅立葉轉換紅外光譜 (FTIR)之分析 62 4-2 複合薄膜性質鑑定及比較 63 4-2-1 複合薄膜之X-射線繞射(XRD)分析 63 4-2-2 複合薄膜之熱性質分析 65 4-2-3 複合薄膜之機械性質分析 68 4-3 複合薄膜表面分析 70 4-3-1 水接觸角 (Water Contact angle) 70 4-3-2 掃描式電子顯微鏡 (SEM)與原子力顯微鏡 (AFM) 71 4-4 複合薄膜之應用 77 4-4-1 氣體分離 77 4-4-2 油水分離 80 第五章、 結論 82 第六章、 未來展望 84 第七章、 參考文獻 85

1. Solomon, S., Manning, M., Marquis, M., and Qin, D., Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Vol. 4. 2007: Cambridge university press.
2. Pachauri, R. K., Gomez-Echeverri, L., and Riahi, K., Synthesis report. 2014.
3. Klinkmann, H. and Vienken, J., Membranes for dialysis. Nephrology Dialysis Transplantation, 1995. 10(supp3): p. 39-45.
4. Izquierdo-Gil, M. A. and Jonsson, G., Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). Journal of Membrane Science, 2003. 214(1): p. 113-130.
5. Mohammadi, T., Kazemimoghadam, M., and Saadabadi, M., Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions. Desalination, 2003. 157(1-3): p. 369-375.
6. Shi, Z., Zhang, W., Zhang, F., Liu, X., Wang, D., Jin, J., and Jiang, L., Ultrafast separation of emulsified oil/water mixtures by ultrathin free‐standing single‐walled carbon nanotube network films. Advanced materials, 2013. 25(17): p. 2422-2427.
7. Hao, P., Wijmans, J., He, Z., and White, L. S., Effect of pore location and pore size of the support membrane on the permeance of composite membranes. Journal of Membrane Science, 2020. 594: p. 117465.
8. Smith, P. H., Plastics Come of Age. Scientific American, 1935. 152(1): p. 5-7.
9. Thompson, R. C., Swan, S. H., Moore, C. J., and Vom Saal, F. S. (2009). Our plastic age: The Royal Society Publishing.
10. de Matos Costa, A. R., Crocitti, A., Hecker de Carvalho, L. H. d., Carroccio, S. C., Cerruti, P., and Santagata, G., Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends (†,‡). Polymers, 2020. 12(10): p. 2317.
11. Bergmann, M., Über den hochmolekularen Zustand von Kohlenhydraten und Proteinen und seine Synthese. Angewandte Chemie, 1925. 38(50): p. 1141-1144.
12. Curtis, N. F., The advent of macrocyclic chemistry. Supramolecular Chemistry, 2012. 24(7): p. 439-447.
13. Pedersen, C. J., The discovery of crown ethers (Noble Lecture). Angewandte Chemie International Edition in English, 1988. 27(8): p. 1021-1027.
14. Xu, J. F., Chen, L., and Zhang, X., How to make weak noncovalent interactions stronger. Chemistry–A European Journal, 2015. 21(34): p. 11938-11946.
15. Lehn, J. M., Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angewandte Chemie International Edition in English, 1988. 27(1): p. 89-112.
16. Cram, D. J. and Cram, J. M., Host-guest chemistry. Science, 1974. 183(4127): p. 803-809.
17. Lehn, J. M., Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self‐organization. Angewandte Chemie International Edition in English, 1990. 29(11): p. 1304-1319.
18. Fullenkamp, D. E., He, L., Barrett, D. G., Burghardt, W. R., and Messersmith, P. B., Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules, 2013. 46(3): p. 1167-1174.
19. Aronsson, C. (2016). Tunable and modular assembly of polypeptides and polypeptide-hybrid biomaterials: Linköping University Electronic Press.
20. Kushner, D., Self-assembly of biological structures. Bacteriological reviews, 1969. 33(2): p. 302-345.
21. Chan, H. and Král, P., Nanoparticles self-assembly within lipid bilayers. Acs Omega, 2018. 3(9): p. 10631-10637.
22. Zhang, J., Santos, P. J., Gabrys, P. A., Lee, S., Liu, C., and Macfarlane, R. J., Self-assembling nanocomposite tectons. Journal of the American Chemical Society, 2016. 138(50): p. 16228-16231.
23. Bütün, V., Billingham, N. C., and Armes, S. P., Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer:  Formation of Micelles and Reverse Micelles in Aqueous Solution. Journal of the American Chemical Society, 1998. 120(45): p. 11818-11819.
24. Rajapaksha, R. D. A. A. (2020). Self-assembling smart materials for biomaterials applications Polymer Nanocomposite-Based Smart Materials (pp. 121-147): Elsevier.
25. Steiner, T., The hydrogen bond in the solid state. Angewandte Chemie International Edition, 2002. 41(1): p. 48-76.
26. Hankins, D., Moskowitz, J., and Stillinger, F., Water molecule interactions. The Journal of Chemical Physics, 1970. 53(12): p. 4544-4554.
27. Koehler, J., Saenger, W., and Lesyng, B., Cooperative effects in extended hydrogen bonded systems involving OH groups. Ab initio studies of the cyclic S4 water tetramer. Journal of computational chemistry, 1987. 8(8): p. 1090-1098.
28. Xantheas, S. S., Cooperativity and hydrogen bonding network in water clusters. Chemical Physics, 2000. 258(2-3): p. 225-231.
29. MacLeod, J. M. and Rosei, F. (2011). 3.02 - Directed Assembly of Nanostructures. In D.L. Andrews, G.D. Scholes, and G.P. Wiederrecht (Eds.), Comprehensive Nanoscience and Technology (pp. 13-68). Amsterdam: Academic Press.
30. Such, G. K., Johnston, A. P., and Caruso, F., Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chemical Society Reviews, 2010. 40(1): p. 19-29.
31. Cheng, C.-C., Gebeyehu, B. T., Huang, S.-Y., Alemayehu, Y. A., Sun, Y.-T., Lai, Y.-C., . . . Lee, D.-J., Entrapment of an adenine derivative by a photo-irradiated uracil-functionalized micelle confers controlled self-assembly behavior. Journal of colloid and interface science, 2019. 552: p. 166-178.
32. Hunter, C. A. and Sanders, J. K., The nature of. pi.-. pi. interactions. Journal of the American Chemical Society, 1990. 112(14): p. 5525-5534.
33. Kawase, T., Tanaka, K., Fujiwara, N., Darabi, H. R., and Oda, M., Complexation of a carbon nanoring with fullerenes. Angewandte Chemie, 2003. 115(14): p. 1662-1666.
34. Tsuzuki, S., Uchimaru, T., and Mikami, M., Intermolecular interaction between hexafluorobenzene and benzene: Ab initio calculations including CCSD (T) level electron correlation correction. The Journal of Physical Chemistry A, 2006. 110(5): p. 2027-2033.
35. Atwood, J. L., Comprehensive supramolecular chemistry II. 2017: Elsevier.
36. Garcia-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., . . . Deyà, P. M., Anion− π interactions in bisadenine derivatives: a combined crystallographic and theoretical study. Inorganic chemistry, 2007. 46(25): p. 10724-10735.
37. Leavens, F. M., Churchill, C. D., Wang, S., and Wetmore, S. D., Evaluating how discrete water molecules affect protein–DNA π–π and π+–π stacking and T-shaped interactions: the case of histidine-adenine dimers. The Journal of Physical Chemistry B, 2011. 115(37): p. 10990-11003.
38. Hunter, W. N., Brown, T., Anand, N. N., and Kennard, O., Structure of an adenine cytosine base pair in DNA and its implications for mismatch repair. Nature, 1986. 320(6062): p. 552-555.
39. Meggers, E., Holland, P. L., Tolman, W. B., Romesberg, F. E., and Schultz, P. G., A Novel Copper-Mediated DNA Base Pair. Journal of the American Chemical Society, 2000. 122(43): p. 10714-10715.
40. Varani, G. and McClain, W. H., The G· U wobble base pair. EMBO reports, 2000. 1(1): p. 18-23.
41. Chow, C.-F., Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection. Journal of fluorescence, 2012. 22(6): p. 1539-1546.
42. Souza, A., Detanico, B. C., Medeiros, L. F., Rozisky, J. R., Caumo, W., Hidalgo, M. P. L., . . . Torres, I. L., Effects of restraint stress on the daily rhythm of hydrolysis of adenine nucleotides in rat serum. Journal of circadian rhythms, 2011. 9(1): p. 1-6.
43. Slominska, E. M., Szolkiewicz, M., Smolenski, R. T., Rutkowski, B., and Swierczynski, J., High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP. Nephron, 2002. 91(2): p. 286-291.
44. Stockelman, M. G., Lorenz, J. N., Smith, F. N., Boivin, G. P., Sahota, A., Tischfield, J. A., and Stambrook, P. J., Chronic renal failure in a mouse model of human adenine phosphoribosyltransferase deficiency. American Journal of Physiology-Renal Physiology, 1998. 275(1): p. F154-F163.
45. Raczyńska, E. D., Kosińska, W., Ośmiałowski, B., and Gawinecki, R., Tautomeric Equilibria in Relation to Pi-Electron Delocalization. Chemical Reviews, 2005. 105(10): p. 3561-3612.
46. Cabaj, M. K. and Dominiak, P. M., Frequency and hydrogen bonding of nucleobase homopairs in small molecule crystals. Nucleic Acids Research, 2020. 48(15): p. 8302-8319.
47. Kelly, R., Lee, Y., and Kantorovich, L., Homopairing possibilities of the DNA base adenine. The Journal of Physical Chemistry B, 2005. 109(24): p. 11933-11939.
48. Cheng, L., Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu (110) Surfaces. Materials, 2016. 9(12): p. 1016.
49. Shimizu, T., Iwaura, R., Masuda, M., Hanada, T., and Yase, K., Internucleobase-interaction-directed self-assembly of nanofibers from homo-and heteroditopic 1, ω-nucleobase bolaamphiphiles. Journal of the American Chemical Society, 2001. 123(25): p. 5947-5955.
50. Cheng, C.-C., Muhabie, A. A., Huang, S.-Y., Wu, C.-Y., Gebeyehu, B. T., Lee, A.-W., . . . Lee, D.-J., Dual stimuli-responsive supramolecular boron nitride with tunable physical properties for controlled drug delivery. Nanoscale, 2019. 11(21): p. 10393-10401.
51. Carothers, W. H., Polymerization. Chemical Reviews, 1931. 8(3): p. 353-426.
52. Whinfield, J., The development of Terylene. Textile Research Journal, 1953. 23(5): p. 289-293.
53. Mueller, R.-J., Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochemistry, 2006. 41(10): p. 2124-2128.
54. Mochizuki, M. and Hirami, M., Structural effects on the biodegradation of aliphatic polyesters. Polymers for advanced technologies, 1997. 8(4): p. 203-209.
55. Maeda, Y., Maeda, T., Yamaguchi, K., Kubota, S., Nakayama, A., Kawasaki, N., . . . Aiba, S., Synthesis and characterization of novel biodegradable copolyesters by transreaction of poly (ethylene terephthalate) with copoly (succinic anhydride/ethylene oxide). Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(24): p. 4478-4489.
56. Herrera, R., Franco, L., Rodríguez‐Galán, A., and Puiggalí, J., Characterization and degradation behavior of poly (butylene adipate‐co‐terephthalate) s. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(23): p. 4141-4157.
57. Jian, J., Xiangbin, Z., and Xianbo, H., An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research, 2020. 3(1): p. 19-26.
58. Bordes, P., Pollet, E., and Avérous, L., Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 2009. 34(2): p. 125-155.
59. Organic Waste Systems. Expert statement : (Bio)degradable mulching films. [Internet] 2017; Available from: https://www.ows.be/publication/expert-statement-biodegradable-mulching-films/.
60. Teti, R., Machining of composite materials. CIRP Annals, 2002. 51(2): p. 611-634.
61. Adrar, S., Habi, A., Ajji, A., and Grohens, Y., Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Applied Clay Science, 2018. 157: p. 65-75.
62. Ren, X., Ren, J., Li, H., Feng, S., and Deng, M., Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012. 8: p. 111-120.
63. Jia, M.-D., Chen, B., Noble, R. D., and Falconer, J. L., Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures. Journal of Membrane Science, 1994. 90(1): p. 1-10.
64. Rea, R., Ligi, S., Christian, M., Morandi, V., Giacinti Baschetti, M., and De Angelis, M. G., Permeability and selectivity of ppo/graphene composites as mixed matrix membranes for CO2 capture and gas separation. Polymers, 2018. 10(2): p. 129.
65. Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B. S., and Chu, B., High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 2006. 47(7): p. 2434-2441.
66. Fiedler, B., Gojny, F. H., Wichmann, M. H., Nolte, M. C., and Schulte, K., Fundamental aspects of nano-reinforced composites. Composites science and technology, 2006. 66(16): p. 3115-3125.
67. Ribeiro Neto, W. A., de Paula, A. C. C., Martins, T. M. M., Goes, A. M., Averous, L., Schlatter, G., and Suman Bretas, R. E., Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polymer Degradation and Stability, 2015. 120: p. 61-69.
68. Liu, Y.-L., Su, Y.-H., Lee, K.-R., and Lai, J.-Y., Crosslinked organic–inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol–water mixtures with a long-term stability. Journal of membrane Science, 2005. 251(1-2): p. 233-238.
69. Chang, Y., Shih, Y.-J., Ruaan, R.-C., Higuchi, A., Chen, W.-Y., and Lai, J.-Y., Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 2008. 309(1): p. 165-174.
70. Liang, C. Z., Chung, T.-S., and Lai, J.-Y., A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 2019. 97: p. 101141.
71. Abdullah, N., Rahman, M. A., Dzarfan Othman, M. H., Jaafar, J., and Ismail, A. F. (2018). Chapter 2 - Membranes and Membrane Processes: Fundamentals. In A. Basile, S. Mozia, and R. Molinari (Eds.), Current Trends and Future Developments on (Bio-) Membranes (pp. 45-70): Elsevier.
72. Bazzarelli, F., Giorno, L., and Piacentini, E. (2015). Dense Membranes. In E. Drioli and L. Giorno (Eds.), Encyclopedia of Membranes (pp. 1-3). Berlin, Heidelberg: Springer Berlin Heidelberg.
73. Graham, T., X. liquid diffusion applied to analysis. Philosophical transactions of the Royal Society of London, 1861(151): p. 183-224.
74. Baker, R. W., Future Directions of Membrane Gas Separation Technology. Industrial & Engineering Chemistry Research, 2002. 41(6): p. 1393-1411.
75. Robeson, L. M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1): p. 390-400.
76. Luo, S., Stevens, K. A., Park, J. S., Moon, J. D., Liu, Q., Freeman, B. D., and Guo, R., Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments. ACS Applied Materials & Interfaces, 2016. 8(3): p. 2306-2317.
77. Wang, Y., Hu, T., Li, H., Dong, G., Wong, W., and Chen, V., Enhancing Membrane Permeability for CO2 Capture Through Blending Commodity Polymers with Selected PEO and PEO-PDMS Copolymers and Composite Hollow Fibres. Energy Procedia, 2014. 63: p. 202-209.
78. Breazu, C., Socol, M., Preda, N., Rasoga, O., Costas, A., Socol, G., . . . Stanculescu, A., Nucleobases thin films deposited on nanostructured transparent conductive electrodes for optoelectronic applications. Scientific Reports, 2021. 11(1): p. 7551.
79. Muhabie, A. A., Cheng, C.-C., Huang, J.-J., Liao, Z.-S., Huang, S.-Y., Chiu, C.-W., and Lee, D.-J., Non-Covalently Functionalized Boron Nitride Mediated by a Highly Self-Assembled Supramolecular Polymer. Chemistry of Materials, 2017. 29(19): p. 8513-8520.
80. Lizymol, P. P. and Thomas, S., Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polymer Degradation and Stability, 1993. 41(1): p. 59-64.
81. Liu, B., Bhaladhare, S., Zhan, P., Jiang, L., Zhang, J., Liu, L., and Hotchkiss, A., Morphology and Properties of Thermoplastic Sugar Beet Pulp and Poly(butylene adipate-co-terepthalate) Blends. Industrial & Engineering Chemistry Research, 2011. 50.
82. Moustafa, H., Guizani, C., Dupont, C., Martin, V., Jeguirim, M., and Dufresne, A., Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. Acs Sustainable Chemistry & Engineering, 2017. 5(2): p. 1906-1916.
83. Wang, Y., Li, H., Dong, G., Scholes, C., and Chen, V., Effect of Fabrication and Operation Conditions on CO2 Separation Performance of PEO–PA Block Copolymer Membranes. Industrial & Engineering Chemistry Research, 2015. 54(29): p. 7273-7283.
84. Zhu, B., Jiang, X., He, S., Yang, X., Long, J., Zhang, Y., and Shao, L., Rational design of poly (ethylene oxide) based membranes for sustainable CO2 capture. Journal of Materials Chemistry A, 2020. 8(46): p. 24233-24252.
85. Sneddon, G., Greenaway, A., and Yiu, H. H., The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 2014. 4(10): p. 1301873.

無法下載圖示 全文公開日期 2026/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE