簡易檢索 / 詳目顯示

研究生: 周君頤
Chun-Yi Chou
論文名稱: 泛函密度理論於硫化氫在矽(100)和鍺/矽(100)表面吸附與反應之研究
Density Functional Theory Study of H2S Adsorption and Reaction on Si(100) and Ge/Si(100) Surfaces
指導教授: 江志強
Jyh-Chiang, Jiang
口試委員: 洪偉修
Wei-Hsiu, Hung
林志興
Jyh-Shing, Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 95
中文關鍵詞: 泛函密度理論硫化氫Si(100)Ge/Si (100)
外文關鍵詞: DFT, H2S, Si(100), Ge/Si(100)
相關次數: 點閱:214下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用泛函密度理論(DFT)探討硫化氫(H2S)在Si(100)-c(4x2)表面與Ge/Si (100)-c(4x2)表面上的吸附和反應。在這次研究中,我們主要考慮四條可能的反應路徑,都是從分子吸附到完全解離的過程。另外,經過DOS分析發現Si (100)表面和Ge/Si (100)表面擁有相似的特徵,其中都以c (4×2)為最穩定的表面。
    在Si(100)表面上,我們發現完全解離的硫化氫可以經由氫在Si(100)-c(4x2)表面上的轉移以及Si-S-Si環的生成,使能量更加穩定而來到最終產物。計算結果發現,速率決定步驟最小的能障為1.19 eV生成一個相較其他三種產物較不穩定的產物,使得這條路徑在低溫下是比較傾向發生的。而速率決定步驟最高則為1.60 eV生成四種可能的產物中最穩定的產物。
    在Ge/Si (100)表面,計算結果顯示和在Si (100)表面有明顯的不同,硫化氫在此表面上部分解離的吸附結構比起完全解離的吸附結構能量是相當穩定的,而可能的四種產物中有三種可能產物能量差別在0.08 V之內。四條可能的反應路徑中,速率決定步驟最高能障為1.23 eV,並且生成四種可能產物中最不穩定的最後生成物,能量上也比部分解離來得不穩定。值得一提的是,硫化氫亦可能在Ge/Si (100)表面進行脫附,與其他反應路徑競爭。


    The adsorption and reaction of H2S on Si(100)-c(4x2) surface and Ge/ Si(100)-c(4x2) surface have been investigated using density functional theory (DFT) calculations. In this study, we have considered molecular, partially and fully dissociative adsorptions on both surfaces, and there are four reaction pathways from molecular absorption to fully dissociative adsorption were determined based on DFT calculation. DOS analysis indicates that Si(100) surface and Ge/Si(100) surface own similar characteristic. Both of them, the c(4×2) phase is the most stable surface.
    We have discovered that the fully dissociated H2S on Si(100)-c(4×2) surface could be more stable through H migration and Si-S-Si ring formation. On Si(100)-c(4×2) surface, our calculated results indicate that the lowest rate-determining reaction barrier for H2S to form the final product is 1.19 eV, which such pathway is kinetically favorable. On the other hand, we have found the most stable thermodynamically favored product, whereas its rate-determining reaction barrier is high, 1.60 eV.
    On the Ge/Si(100) surface, the calculations reveal a great difference to Si(100) surface, i.e. the partial dissociative adsorption minima are quite stable compared to fully dissociative ones. Three of the final states have approximately similar energy within 0.08 eV. The lowest rate-determining reaction barrier is 1.23 eV, and its final state is the second stable species of four final states. The highest rate-determining reaction barrier is 1.53 eV and its product is the least stable. In addition, the H2S molecule desorption from Ge/Si(100) surface would compete with the following reactions.

    Chapter 1: Introduction 1.1 Structure of semiconductor surfaces 1.2 Surface Oxidation 1.3 Surface Passivation 1.3.1 Hydride Passivation 1.3.2 Chloride Passivation 1.3.3 Sulfide Passivation 1.4 Organic Functionalization 1.5 Silicon-germanium Alloy 1.6 Motivation Chapter 2: Theoretical Background 2.1 Quantum Chemistry90 16 2.2 Density Functional Theory 2.3 Brillouin zone sampling 2.4 Plane Wave Basis Set 2.5 Pseudopotential 2.6 Ultrasoft-pseudopotential 2.7 GGA Approximation 2.8 Nudged Elastic Band method (NEB) Chapter 3: Computational Details Chapter 4: The adsorptions and reactions for H2S on Si(100) surface 4.1 Surface Model 4.1.1 Si Bulk 4.1.2 Clean Si(100) Surface 4.1.2.1 Density of States Analysis of Si(100)-c(4×2) Surface 4.2 H2S adsorptions on the Si(100)-c(4x2) surface 4.2.1 H2S Molecular Adsorption on the Si(100)-c(4x2) surface 4.2.1.1 Density of States Analysis of free H2S 4.2.1.2 Density of States Analysis of H2S adsorbed on Si(100)-c(4×2) Surface 4.2.2 Partially Dissociated H2S on the Si(100)-c(4x2) surface 4.2.3 Fully Dissociated H2S on the Si(100)-c(4x2) surface 4.3 H2S Reaction Pathways on the Si(100)-c(4x2) surface 4.3.1 Reaction Pathway I for H2S on the Si(100)-c(4x2) surface 4.3.2 Reaction Pathway II for H2S on the Si(100)-c(4x2) surface 4.3.3 Reaction Pathway III for H2S on the Si(100)-c(4x2) surface 4.3.4 Reaction Pathway IV for H2S on the Si(100)-c(4x2) surface 4.3.5 A Summary of H2S Reactions on the Si(100)-c(4×2) surface Chapter 5: The adsorptions and reactions for H2S on Ge/Si(100) surface 5.1 Clean Ge/Si(100) Surface 5.1.2 Density of States Analysis of Ge/Si(100)-c(4×2) Surface 5.2 H2S adsorptions on the Ge/Si(100)-c(4x2) surface 5.2.1 H2S Molecular Adsorption on the Ge/Si(100)-c(4x2) surface 5.2.1.1 Density of States Analysis of H2S adsorbed on Ge/Si(100)-c(4×2) Surface 5.2.2. Partially Dissociated H2S on the Ge/Si(100)-c(4x2) surface 5.2.3 Fully Dissociated H2S on the Ge/Si(100)-c(4x2) surface 5.3 H2S Reaction Pathways on the Ge/Si(100)-c(4x2) surface 5.3.1 Reaction Pathway I for H2S on the Ge/Si(100)-c(4x2) surface 5.3.2 Reaction Pathway II for H2S on the Ge/Si(100)-c(4x2) surface 5.3.3 Reaction Pathway III for H2S on the Ge/Si(100)-c(4x2) surface 5.3.4 Reaction Pathway IV for H2S on the Ge/Si(100)-c(4x2) surface 5.3.5 A Summary of H2S Reactions on the Ge/Si(100)-c(4x2) surface Chapter 6: Conclusions

    (1) S.I.A., The National Technology Roadmap for Semiconductors, Sematech, Austin, 1999.
    (2) Ashcroft, N.W.; Mermin, N. D. Solid State Physics, Harcourt Brace College Publishers, Fort Worth, 1976.
    (3)Schlier, R. E.; Farnsworth, H. E. J. Chem. Phys. 1959, 30, 917.
    (4) Lin, Q.; Hoffmann, R. J. Am. Chem. Soc. 1995, 117, 4082.
    (5)Wolkow, R. A. Phys. Rev. Lett. 1992, 68, 2636.
    (6) Weakliem, P.C.; Carter, E.A. J. Chem. Phys. 1992, 96, 3240.
    (7) Kubby, J. A.; Griffith, J. E.; Becker, R. S.; Vickers, J. S. Phys. Rev. B 1987, 36, 6079.
    (8) Shigekawa, H.; Hata, K.; Miyake, K.; Ishida, M.; Ozawa, S. Phys. Rev. B 1997, 55, 15448.
    (9) Kondo, Y.; Amakusa, T.; Iwatsuki, M.; Tokumoto, H. Surf. Sci. 2000, 453, L318.
    (10) Yokoyama, T.; Takayanagi, K. Phys. Rev. B 2000, 61, R5078.
    (11) Uozumi, T.; Tomiyoshi, Y.; Suehira, N.; Sugawara, Y.; Morita, S. Appl. Surf. Sci. 2002, 188, 279.
    (12) Hata, K.; Yoshida, S.; Shigekawa, H. Phys. Rev. Lett. 2002, 89, 286104.
    (13) Ono, M.; Kamoshida, A.; Matsuura, A.; Ishikawa, N.; Eguchi, T.; Hasegawa, Y. Phys. Rev. B 2003, 67, 201306.
    (14) Dabrowski, J.; Scheffler, M. Appl. Surf. Sci. 1992, 15, 56.
    (15) Sato, T.; Iwatsuki, M.; Tochihara, H. J. Electron. Microsc. 1999, 48, 1.
    (16) Hata, K.; Sainoo, Y.; Shigekawa, H. Phys. Rev. Lett. 2001, 86, 3084.
    (17) Zandvliet, H.J.W. Phys. Rep.2003, 388, 1.
    (18) Massoud, H. Z.; Poindexter, E. H.; Helms, C. R., Proceedings of the 1st-3rd International Symposium on the Physics and Chemistry of SiO2 and the Si/SiO2 Interface; Electrochemical Society: Pennington, NJ, 1988-1996; Vol. 3.
    (19) Horie, T.; Takakuwa, Y.; Miyamoto, N. Jpn. J. Appl. Phys. 1994, 33, 4684.
    (20) Sano, N.; Sekiya, M.; Hara, M.; Kohno, A.; Sameshima, T. Appl. Phys. Lett. 1995, 66, 2107.
    (21) Dujardin, G.; Mayne, A.; Comtet, G.; Hellner, L.; Jamet, M.; Goff, E. L.; Millet, P. Phys. ReV. Lett. 1985, 76, 3782.
    (22) Okamoto, Y. Phys. ReV. B 1998, 58, 6760.
    (23) Niwano, M.; Terashi, M.; Shinohara, M.; Shoji, D.; Miyamoto, N. Surf. Sci. 1998, 401, 364.
    (24) Sneh, O.; Wise, M. L.; Ott, A. W.; Okada, L. A.; George, S. M. Surf. Sci. 1995, 334, 135.
    (25) Self, K. W.; Yan, C.; Weinberg, W. H. Surf. Sci. 1997, 380, 408.
    (26) Weldon, M. K.; Stefanov, B. B.; Raghavachari, K.; Chabal, Y. J. Phys. ReV. Lett. 1997, 79, 2851.
    (27) Stefanov, B. B.; Alejandra, B. G.; Makcus, K. W.; Raghavachari, K.; Chabal, Y. J. Phys. ReV. Lett. 1998, 81, 3908.
    (28) Ibach, H.; Wagner, H.; Bruchmann, D. Solid State Comm., 1982, 42, 457.
    (29) Chabal, Y. J. Phys. Rev. B 1984, 29, 3677.
    (30) Chabal, Y. J.; hristman, S. B. Phys. Rev. B 1984, 29, 6974.
    (31) Stucki, F.; Anderson, J., Lapeyre, G. J.; Farrell, H. H. Surf. Sci. 1984, 143, 84.
    (32) Gao, Q.; Dohnalek, Z.; Cheng, C. C.; Choyke, W. J.; Yates, J. T. Surf. Sci. 1994, 312, 261.
    (33) Johnson, A. L.; Walczak, M. M.; Madey, T. E. Langmuir, 1988, 4, 277.
    (34) Larsson, C. U. S.; Johnson, A. L.; Flodstrom, A.; Madey, T. E. J. Vac. Sci. Technol. A, 1987, 5, 842.
    (35) Schulze, R. K.; Evans, J. F. Appl. Surf. Sci. 1994, 81, 449.
    (36) Zhou, X. L.; Flores, C. R.; White, J. M. Appl. Surf. Sci. 1992, 62, 223.
    (37) Weldon, M. K.; Queeney, K. T.; Gurevich, A. B.; Stefanov, B. B.; Chabal, Y. J.; Raghavachari, K. J. Chem. Phys. 2000, 113, 2440.
    (38) Stefanov, B. B.; Gurevich, A. B.; Weldon, M. K.; Chabal, Y. J.; Raghavachari, K. Phys. ReV. Lett. 1998, 81, 3908.
    (39) Gurevich, A. B.; Stefanov, B. B.;Weldon, M. K.; Chabal, Y. J.; Raghavachari, K. Phys. ReV. Lett. 1998, 58, R13434.
    (40) Dimitri, B. S.; Brian, G. W. J. Phys. Chem. C 2008, 112, 9434.
    (41) Makcus, K. W.; Stefanov, B. B.; Raghavachari, K.; Chabal, Y. J. Phys. ReV. Lett. 1997, 79, 2851
    (42)Okamoto, Y. Phys. ReV. B 1999, 60, 10632.
    (43) Watanabe, H.; Nanbu, S.; Wang, Z.-H.; Aoyagi, M. Chem. Phys. Lett. 2006, 424, 133.
    (44) Seino, K.; Schmidt, W.G. Surf. Sci. 2004, 571, 157.
    (45) Watanabe, H.; Wang, Z.-H.; Nanbu, S.; Maki, J.; Urisu, T.; Aoyagi, M.; Ooi, K. Chem. Phys. Lett. 2005, 412, 347.
    (46) Konec ̌ny ́, R.; Doren, D. J. J. Chem. Phys. 1997, 106, 2426.
    (47) Watanabe, H.; Nanbu, S.; Wang, Z.-H.; Maki, J.; Urisu, T.; Aoyagi, M.; Ooi, K. Chem. Phys. Lett. 2004, 383, 523.
    (48) Cho, J.-H.; Kim, K. Phys. ReV. B 2000, 61, 4503.
    (49) Lee, J.-Y; Cho, J.-H. J. Phys. Chem. B 2006, 110, 18455.
    (50) Prabhakaran, K.; Ogino, T. Surf. Sci. 1995, 325, 263.
    (51) Schmeisser, D.; Schnell, R. D.; Bogen, A.; Himpsel, F. J.; Rieger, D.; Landgren, G.; Morar, J. F. Surf. Sci. 1986, 172, 455.
    (52) Weldon, M.K.; Queeney, K.T.; Jr., J.E.; Raghavachari, K.; Chabal, Y. J. Surf. Sci. 2002, 500, 859.
    (53) Trucks, G. W.; Raghavachari, K.; Higashi, G. S.; Chabal, Y. J. Phys. Rev. Lett. 1990, 65, 504.
    (54) Appelbaum, J. A.; Hamann, D. R.; Hagstrum, H. D.; Sakurai, T. Surf. Sci. 1978, 70, 645.
    (55) Chabal, Y. J. Surf. Sci. 1986, 168, 594.
    (56) Papagno, L.; Shen, X. Y.; Anderson, J.; Spagnolo, G. S.; Lapeyre, G. J. Phys. Rev. B 1986, 34, 7188.
    (57) Maeng, J. Y,; Lee, J.Y.; Cho, Y.E.; Kim, S.; Jo, S. K. Appl. Phys. Lett. 2002, 81, 3555.
    (58) Lewis, L. B.; Segall, J.; Janda, K. C. J. Chem. Phys. 1995, 102, 7222.
    (59) Shimokawa, S.; Namiki, A.; Gamo, M. N.; Ando, T. J. Chem. Phys. 2000, 113, 6919.
    (60) Deegan, T.; Hughes, G. Appl. Surf. Sci. 1998, 123/124, 66.
    (61) Choi, K.; Buriak, J. M. Langmuir 2000, 16, 7737.
    (62) de Wijs, G. A.; De Vita, A.; Selloni, A. Phys. Rev. Lett. 1997, 78, 4877.
    (63) Aldao, C. M.; Weaver, J. H. Prog. Surf. Sci.2001, 68, 189.
    (64)Chen, D.; Boland, J. J. Surf. Sci. 2002, 518, L583.
    (65) Yarmoff, J. A.; Shuh, D. K.; Durbin, T. D.; Lo, C. W.; Lapiano-Smith, D. A.; McFeely, F. R.; Himpsel, F. J. J. Vac. Sci. Technol. A 1992, 10, 2303.
    (66) Gao, Q.; Cheng, C. C.; Chen, P. J.; Choyke, W. J.; Yates, Jr., J. T. J.Chem. Phys. 1993, 98, 8308.
    (67) Sneh, O.; Wise, M. L.; Ott, A. W.; OkadaL, A.; George, S. M. Surf. Sci. 1995, 334, 135.
    (68) Robinson, M. B.; Dillon, A. C.; George, S. M. J. Vac. Sci. Technol. A, 1995, 13, 35.
    (69) Dillon, A. C.; Wise, M. L.; Robinson, M. B.; George, S. M. J. Vac. Sci.Technol. A 1995, 13, 1.
    (70) Zhu, X.-Y.; Mulder, J. A.; Bergerson, W. F. Langmuir 1999, 15, 8147.
    (71) Wyman, D. P.; Wang, J. Y. C.; Freeman, W. R. J. Org. Chem. 1963, 28, 3173.
    (72) Zhu, X.-Y.; Boiadjiev, V.; Mulder, J. A.; Hsung, R. P.; Major, R. C. Langmuir 2000, 16, 6766.
    (73) Schnell, R.D.; Himpsel, F.J.; Bogen, A.; Rieger, D.; Steinmann, W. Phys. Rev. B, Condens. Matter 1985, 32, 8052.
    (74) Ikeda, K.; Imai, S.; Matsumura, M. Appl.Surf. Sci, 1997, 112, 87.
    (75) Schörder-Bergen, E.; Ranke, W. Sur. Sci. 1990, 236, 103.
    (76) Kuhr, H.J.; Ranke, W. Sur. Sci. 1987, 189/190, 420.
    (77) M. Han, Y. Luo, N. Camillone, III, and R. M. Osgood, Jr. J. Phys. Chem. B 2000, 104, 6576.
    (78) Lai, Y.-H.; Yeh, C.-T.; Lin, Y.-H.; Hung, W.-H. Sur. Sci. 2002, 519, 150.
    (79) Nelen, L. M.; Fuller,K.; Greenlief, C. M. Appl. Sur. Sci. 1999,150, 65.
    (80) Romero, M.T.; Takeuchi, N. Surf. Sci. 2003, 524, 157.
    (81) Whall, T. E.; Parker, E. H. C. Thin Solid Films 2000, 367, 250.
    (82) Meyerson, B. S. IBM J. Res., Dev. 2000, 44, 391.
    (83) Presting, H.; Konle, J.; Hepp, M.; Kibbel, H.; Thonke, K.; Sauer,R.; Corbin, E.; Jaros, M. Opt. Eng. 2000, 39, 2624.
    (84) See, P.; Paul, D. J.; Hollander, B.; Mantl, S.; Zozoulenko, I. V.; Berggren, K. F. IEEE Electron DeV. Lett 2001, 22, 182.
    (85) Smardon, R.D.; Srivastava, G.P. Sur. Sci. 2005, 584, 161.
    (86) Chen,W.; Zhang, D. W.; Ren, J.; Lu, H. L.; Zhang, J.-Y.; Xu, M.; Wang, J.-T.; Wang, L.-K. Thin Solid Films 2005, 479, 73.
    (87) Mui, C.; Bent, S. F.; Musgrave, C. B. J. Phys. Chem. A 2000, 104, 2457.
    (88) Chen,W.; Lu, H. L.; Zhang, D. W.; Xu, M.; Ren, J.; Zhang, J.-Y.; Wang, J.-T.; Wang, L.-K. Appl. Phys. Lett. 2005, 86, 142901.
    (89) Mui, C.; Bent, S. F.; Musgrave, C. B. J. Phys. Chem. B 2004, 108, 6336.
    (90) Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
    (91) Lebowitz, J. L.; Lieb., E. H. Phys. Rev. Lett. 1969, 22, 631.
    (92)Bouckaert, L. P.; Smoluchowski, R.; Wigner, L. P. Phys. Rev. 1969, 50, 58.
    (93) Chadi, D. J.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
    (94) Monkhorst, M. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (95) Chadi, D. J. Phys. Rev. B 1977, 16, 1746.
    (96) Evarestov, R. A.; Smirnov, V. P. Phys. Stat. Sol. 1983, 119, 9.
    (97) Froyen, S. Phys. Rev. B 1989, 39, 3168.
    (98) Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1990, 2, 9837.
    (99) Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1991, 3, 8841.
    (100) Denteneer, P. J. H.; van Haeringer, W. J. Phys. Cond. Matt. 1985, 18, 4127.
    (101) Chadi, D. L.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
    (102) Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898.
    (103) Hamann, D. R.; Schlüter, M.; Chiang, C. Phys. Rev. Lett. 1979, 43, 1494 .
    (104) Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Phys. Rev. B 1982, 26, 4199.
    (105) Kerker, G. J. Phys. C 1980, 13, L189.
    (106) Vanderbilt, D. Phys. Rev. B 1985, 32, 8412.
    (107) Troullier, N.;Martins, J. L. Solid State Comm. 1990, 74, 613.
    (108) Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993.
    (109) Goedecker, S. ; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703.
    (110) Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641.
    (111) Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Phys. Rev. B 1990, 41, 1227.
    (112) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892 (1990).
    (113) Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. Rev. B 1993, 47,10142.
    (114) Burke, P. K.; Ernzerhof , M. Phys. Rev. Lett. 1996, 77, 18.
    (115) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (116) Jo´nsson, H., Mills, G.; Jacobsen, K. W. `Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions', in `Classical and Quantum Dynamics in Condensed Phase Simulations', ed. B. J. Berne, G. Ciccotti and D. F. Coker (World Scientific, 1998).
    (117) Mills, G.; Jo´nsson, H. Phys. Rev. Lett. 1994, 72, 1124.
    (118) Mills, G.; Jo´nsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
    (119) Toebbens, D.M.;Stuesser, N.;Knorr, K.;Mayer, H.M.;Lampert, G. Materials Science Forum 2001, 378, 288.
    (120) CRC Handbook of Chemistry and Physics, 80th ed., CRC, Boca Raton, 1999.
    (121) Miotto, R.; Oliveira, M. C.; Pinto, M. M. Phy. Rev. B 2004, 69, 235331.
    (122) Demirel, G.; Akmak, M.; Aykara, T. J. Phys. Chem. C 2007, 111, 4375.
    (123)周文祺 淡江大學化學學系博士論文, 2007.
    (124) Dabrowski, J.; Mussig, H.-J. Silicon Surfaces and Formation of Interfaces, World Scientific, Singapore 2000.
    (125) Burns, G. Solid State Physics, International Edition, Academic Press, New York, 1990.
    (126) Çakmak, M.; Srivastava, G. P. Phys. Rev. B 1999, 60, 5497.
    (127) Cho, J.-H.; Kim, K.S.; Lee, S.-H.; Kang, M.-H. Phys. Rev. B 2000, 61, 4503.
    (128) Andrew Föraker; Douglas J. D. J. Phys. Chem. B 2003, 107, 8507.
    (129) Houssa, M.; Nelis, D.; Hellin, D.; Pourtois, G.; Conard, T. Appl. Phy. Lett. 2007, 90, 222105
    (130) Gay, S. C. A.; Srivastava, G. P. Phys. Rev. B 1999, 60, 1488.
    (131) Hong, S.; Cho, Y. E.; Maeng, J. Y.; Kim, S. J. Phys. Chem. B 2004, 108, 15229.
    (132) Grassman, T.J.; Bishop, S.R.; Kummel, A.C. Microelectronic Engineering 2009, 86, 249.
    (133) Krüger, P.; Pollmann, J. Appl. Phys. A, 1994, 59, 487.
    (134) Takahasi, M.; Nakatani, S.; Ito, Y.; Takahashi, T.; Zhang, X. W.; Ando, M. Surf. Sci., 1995, 338, L846.
    (135) Bullock, E. L.; Gunnella, R.; Patthey, L., Abukawa, T., Kono, S.; Natoli, C. R.; Johansson, L. S. O. Phys. Rev. Lett., 1995, 74, 2756.
    (136) Fontes, E.; Patel, J. R.; Comin, F. Phys. Rev. Lett., 1994, 72, 1131.
    (137) Oyanagi, H.; Sakamoto, K.; Shioda, R.; Kuwahara, Y.; Haga, K. Phys. Rev. B, 1995, 52, 5824.
    (138) Jenkins, S. J.; Srivastava, G. P. J. Phys.: Condens. Matter, 1996, 8, 6641.

    QR CODE