簡易檢索 / 詳目顯示

研究生: 王仁源
Ren-Yuan Wang
論文名稱: 藍寶石晶圓之奈米級研磨切削模式分析
Analysis of Nanoscale Abrasive Cutting for Sapphire Wafer
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 翁政義
Cheng-I Weng
陳朝光
Chao-Kuang Chen
陳文華
Wen-Hwa Chen
王國雄
Kuo-Shong Wang
蔡穎堅
Ying-Chien Tsai
黃佑民
You-Min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 準穩態分子靜力學等效應力等效應變研磨移除深度倒置式化學機械拋光修正式TRIZ多重工程分析
外文關鍵詞: Quasi-steady molecular statics, equivalent stress, equivalent strain, abrasive removal depth, compensated chemical mechanical polishing, modified TRIZ multi-engineering analysis
相關次數: 點閱:472下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為三個部份,分別是建立三維準穩態分子靜力學奈米級研磨切削模式、化學機械研磨研磨墊具有方格子花紋時研磨藍寶石晶圓之研磨深度的理論模型、以及多參數修正式TRIZ多重工程分析方法,針對這三個部份進行模擬分析與實驗驗證。這三個部份圍繞著一個核心主題,即是化學機械拋光研磨切削藍寶石晶圓。
化學機械拋光研磨切削藍寶石晶圓,其切削行為是三維的模式。故本文發展建立三維奈米尺度準穩態分子靜力學研磨切削模式。探討單一研磨顆粒研磨切削過程中,先是下壓工件到固定深度後,在研磨工件的研磨切削行為、三個軸向作用力的變化,以及工件中間截面的等效應變、等效應力的分佈趨勢。做為化學機械拋光研磨藍寶石晶圓時的參考,以減少破裂的機率。此外本文採用AFM定壓力奈米切削實驗,採用一種新的比下壓能的方法,以比下壓能實驗數據及公式來驗證本文所建立的奈米級研磨切削模擬模式為合理的。
接著建立一個新的研磨墊具有方格子花紋時,化學機械拋光研磨切削藍寶石晶圓的研磨移除深度理論模型,此理論模型結合一種應用二值化影像畫素分割的單位時間增量的研磨次數分析模式,與單一像素多研磨顆粒之接觸模式。本研究應用此理論模型,探討傳統化學機械拋光研磨時使用不同體積濃度與不同研磨粒直徑,以及使用倒置式化學機械拋光進行相同研磨粒直徑及體積濃度之研磨移除深度數值模擬分析。模擬的結果不但可得到晶圓的平均研磨移除深度,並可獲得晶圓概略的表面狀況。本文並進行傳統化學機械抛光實驗,比較模擬結果與實驗結果,驗證本研究所建立之藍寶石晶圓研磨移除深度理論模型之合理性。
最後,以前述的倒置式化學機械拋光之研磨移除深度理論模型的數值模擬結果為分析改善對象。使用多參數修正式TRIZ多重工程分析方法,結合倒置式化學機械拋光之研磨移除深度理論模型,進行改善倒置式化學機械拋光研磨藍寶石成碗形晶圓的研磨次數不均勻的現象,進而改善晶圓的平坦度。


The study includes three parts, those are the nanoscale abrasive cutting model of three-dimensional quasi-steady molecular statics, the theoretical model of abrasive depth for polishing of sapphire wafer by the chemical mechanical polishing polishing pad with cross pattern, and the modified TRIZ clustering method to propose the modified TRIZ multi-engineering steps analysis method for multiple parameters. Therefore, proceeding the simulation analysis and experimental verification for these three parts. These three parts around a core topic, that is, chemical mechanical polishing abrasive cutting sapphire wafer.
The cutting behavior of the chemical mechanical polishing abrasive cutting sapphire wafer is a three dimensional model. Therefore, the study employs the nanoscale abrasive cutting model of three-dimensional quasi-steady molecular statics to analyze the abrasive cutting behavior at the three stages of abrasive cutting process, including down pressing stage, and early stage and final stage of abrasive cutting, and also analyzes the trends of action force in different directions at the three stages of abrasive cutting process. Having obtained the action force, the study further analyzes the distribution trends of the equivalent stress and equivalent strain on the central section of sapphire wafer. The analysis results can be used as the reference when abrasive cutting sapphire wafer to reduce the chance of fracture. Besides, through AFM nanocutting experiment at a fixed down force, a method of new specific down force energy is used to verify that the simulation model of nanoscale abrasive cutting is reasonable.
Then, the study combines the theoretical model of polishing times with the contact model of single-pixel multiple abrasive particles to establish a new theoretical model of abrasive depth for polishing of sapphire wafer by the chemical mechanical polishing that polishing pad with cross pattern. Base on the theoretical model, the study carries out numerical simulation with the slurry of the same volume concentration but with different abrasive particle diameters, the same abrasive particle diameter but with different volume concentrations for the traditional chemical mechanical polishing. And the study also carries out numerical simulation with the slurry of the same volume concentration and the the same abrasive particle diameter for the compensated chemical mechanical polishing. The simulation results not only can acquire the average abrasive removal depth at each pixel position, but also can acquire the surface condition of wafer. Through chemical mechanical polishing experimental data analysis, it can verify the rationality of the wafer abrasive depth model established by this study.
Finally, based on the above analysis results of compensated chemical mechanical polishing, the study combines the compensated chemical mechanical polishing theoretical model of abrasive removal depth of sapphire wafer polished by polishing pad with cross pattern with the modified TRIZ multi-engineering steps analysis method for multiple parameters to proceed improvement analysis. The results of the analysis show it can make the distribution of polishing times of sapphire wafer evener, and further improve the flatness and reduce the requiring polishing time.

中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖索引 IX 表索引 XIII 符號表 XV 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 1.2.1 分子力學奈米加工模擬之文獻 4 1.2.2 原子力顯微鏡奈米加工之文獻 8 1.2.3 CMP材料移除體積相關文獻 11 1.2.4 TRIZ發明法則相關文獻 15 1.3 本文架構 17 第二章 三維準穩態分子靜力學奈米級研磨切削模式 19 2.1 三維準穩態分子靜力學奈米級研磨切削之理論模式 19 2.2 等效應力與等效應變的計算模式 29 第三章 化學機械拋光研磨研磨墊具有方格子花紋研磨藍寶石晶圓之研磨移除深度的理論模型 34 3.1 傳統化學機械拋光研磨研磨墊具有方格子花紋研磨藍寶石晶圓之研磨移除深度模型 34 3.1.1 假設條件 34 3.1.2 單一像素位置之平均研磨移除深度分析 36 3.1.3 平均研磨移除深度模擬分析的演算法則 43 3.2 倒置式化學機械拋光研磨墊具有方格子花紋時研磨藍寶石晶圓成碗形結構之研磨深度模型 44 3.2.1 碗形晶圓與研磨墊二值化像素分割模型之定義 44 3.2.2 單一像素位置之平均研磨移除深度分析 45 第四章多參數修正式TRIZ多重工程分析創新研發流程模型 48 4.1 修正式TRIZ分群法 48 4.2 多參數修正式TRIZ多重工程分析改善倒置式化學機械拋光研磨平坦度之方法 53 第五章 實驗與驗證模式 55 5.1 AFM奈米切削加工實驗 55 5.1.1 AFM實驗設備與實驗參數 55 5.1.2 比下壓能之理論模型 56 5.2 傳統化學機械拋光藍寶石晶圓實驗 59 5.2.1 傳統化學機械拋光藍寶石晶圓之實驗設備與實驗參數 59 5.2.2 實驗步驟 60 第六章 結果與討論 62 6.1 三維準穩態分子靜力學之奈米級研磨切削模式切削藍寶石晶圓結果探討 62 6.1.1 研磨切削行為的探討 62 6.1.2 研磨切削作用力的探討 63 6.1.3 模擬驗證 67 6.1.4 等效應力與等效應變的分析 69 6.2 傳統化學機械拋光研磨墊具有方格子花紋時藍寶石晶圓之研磨移除深度的數值模擬結果探討 72 6.2.1 研磨漿體積濃度相同研磨粒粒徑不同之研磨移除深度探討 72 6.2.2 不同研磨漿體積濃度之研磨移除深度探討 79 6.3 倒置式化學機械拋光之研磨移除深度探討 84 6.3.1 倒置式化學機械拋光模擬驗證 86 6.3.2 倒置式化學機械拋光之研磨移除深度模擬分析結果探討 87 6.4 多參數修正式TRIZ多重工程分析改善倒置式化學機械拋光研磨平坦度之創新研發分析流程結果探討 93 6.4.1 第一次改善分析 94 6.4.2 第一次改善分析及研磨次數數值模擬驗證 99 6.4.3 第二次改善分析及研磨次數數值模擬驗證 102 6.4.4 第三次改善分析及研磨次數數值模擬驗證 103 6.4.5 研磨移除深度模擬驗證 105 6.4.6 第四次改善分析及研磨次數與研磨移除深度模擬驗證 106 第七章 結論 113 7.1 三維準穩態分子靜力學奈米級研磨切削模式 113 7.2 傳統化學機械拋光研磨墊具有方格子花紋時藍寶石晶圓之研磨移除深度模擬 114 7.2.1 相同研磨漿體積濃度不同研磨粒粒徑 114 7.2.2 不同研磨漿體積濃度相同研磨粒粒徑 115 7.3 倒置式化學機械拋光研磨墊有花紋之研磨晶圓的研磨移除深度模擬 115 7.4 多參數修正式TRIZ多重工程分析改善倒置式化學機械拋光研磨平坦度之創新研發分析流程 116 參考文獻 117

[1] Irving, J. H. and Kirkwood, J. G., “The Statistical Mechanical Theory of Transport Properties. IV.: The Equations of Hydrodynamics,” Journal of Chemical Physics, Vol. 18, No.6, pp. 817-829 (1950).
[2] Heermann, D. W., Computer Simulation Methods in Theoretical Physics, Springer-Verlag Berlin Heidelberg, Heidelberg, Germany (1986).
[3] Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford University Press, New York, USA (1987).
[4] Haile, J. M. , Molecular Dynamic Simulation: Elementary Methods, John Wiely & Sons Inc., New York, USA (1992).
[5] Belak, J. and Stowers, I. F., “A Molecular Dynamics Model of the Orthogonal Cutting Process,” Proceedings of the 1990 Annual Meeting of the American Society of Precision Engineers, New York, USA, pp.76-79 (1990).
[6] Belak, J., Boercker, D. B., and Stowers, I. F., “Simulation of Nanometre-Scale Deformation of Metallic and Ceramic Surfaces,” MRS Bulletin, Vol. 18, pp.55-60 (1993).
[7] Maekawa, K. and Itoh, A., “A Friction and Tool Wear in Nano-scale Machining - a Molecular Dynamics Approach,” Wear, Vol. 188, pp.115-122 (1995).
[8] Zhang, L. C. and Tanaka, H., “Towards a Deeper Understanding of Wear and Friction on the Atomic Scale - a Molecular Dynamics Analysis,” Wear, Vol. 211, pp. 44-53 (1997).
[9] Childs, T. H. C. and Maewaka, K., “Computer-Aided Simulation and Experimental Studies of Chip Flow and Tool Wear in The Turning of Flow Alloy Steels by Cemented Carbide Tools,” Wear, Vol. 139, No. 2, pp.235-250 (1990).
[10] Ikawa, N., Shimada, S., Tanaka, H., and Ohmori, G., “An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-work Interaction in Diamond Turning,” CIRP Annals - Manufacturing Technology, Vol 40, No.1, pp.551-554 (1991).
[11] Shimada, S., Ikawa, N., Tanaka, H., Ohmori, G., Uchikoshi, J., and Yoshinaga, H., “Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation,” CIRP Annals - Manufacturing Technology, Vol. 42, No.1, pp.91-94 (1993).
[12] Shimada, S., Ikawa, N., Tanaka, H., and Uchikoshi, J., “Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis,” CIRP Annals - Manufacturing Technology, Vol. 43, No.1, pp. 51-54 (1994).
[13] Shimada, S., “Molecular Dynamics Analysis of Nanometric Cutting Process,” International Journal of the Japan Society for Precision Engineering, Vol. 29, No.4, pp. 283-289 (1995).
[14] Shimada, S. and Ikawa, N., “Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining,” CIRP Annals - Manufacturing Technology, Vol. 41, No. 1, pp.117-120 (1992).
[15] Fang, T. H. and Weng, C. I., “Three-Dimensional Molecular Dynamics Analysis of Processing using a Pin Tool on the Atomic Scale,” Nanotechnology, Vol. 11, pp.148-153 (2000).
[16] Inamura, T., Suzuki H., and Takezawa, N., “Cutting Experiments in a Computer using Atomic Models of a Copper Crystal and a Diamond Tool,” International Journal of the Japan Society for Precision Engineering, Vol. 25, No.4, pp.259-266 (1991).
[17] Inamura, T. and Takezawa, N., “Atomic-Scale Cutting in a Computer using Crytal Models of Copper and Diamond,” CIRP Annals - Manufacturing Technology, Vol.41, No.1, pp.121-124 (1992).
[18] Inamura, T., Takezawa, N., and Kumaki, N., “Mechanics and Energy Dissipation in Nanoscale Cutting,” CIRP Annals - Manufacturing Technology, Vol.42, No.1, pp.79-82 (1993).
[19] Lin, Z. C. and Huang, J. C., “A Nano-orthogonal Cutting Model Based on a Modified Molecular Dynamics Technique,” Nanotechnology, Vol. 15, pp. 510-519 (2004).
[20] Kwon, Y. W. and Jung, S. H., “Atomic Model and Coupling with Continuum Model for Static Equilibrium Problems,” Computational Structures Technology, Vol. 82, pp. 1993-2000 (2004).
[21] Igor, Y. T. and Vinogradov, O., “A Method for Quasi-Static Analysis of Topologically Variable Lattice Structures,” International Journal of Computational Methods, Vol. 126, pp. 71-81 (2006).
[22] Jeng, Y. R. and Tan, C. M., “Study of Nanoindentation using FEM Atomic Model,” Journal of Tribology, Vol. 126, pp. 767-774 (2004).
[23] Lin, Z. C. and Huang, W .F., “Nanocutting Force Investigation of Single Atom with the Defectless Single Crystal in the Cutting Direction 100 and on the Orientation (001) of Cu and Ni Material,” Journal of the Chinese Society of Mechanical Engineers, Vol.30, No.4, pp. 269-278(2009).
[24] Lin, Z. C. and Ye, J. R., “Quasi-steady Molecular Statics Model for Simulation of Nanoscale Cutting with Different Diamond Cutters,” Computer Modeling in Engineering & Sciences, Vol.50, No.3, pp. 227-252 (2009).
[25] Lin, Z. C. and Hsu, Y. C., “A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth using Specific Down Force Energy with an AFM Probe,” Journal of Materials Processing Technology, Vol. 212, Issue 11, pp. 2321–2331(2012).
[26] Binning, G., Quate, C. F., and Gerber, C., “Atomic Force Microscope,” Physical Review Letters, Vol. 56, No.9, pp. 930-933 (1986).
[27] Nanjo H., Nony L., Yoneya, M., and Aime J. P., “Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-Contact Situation,” Applied Surface Science, Vol. 210, No.5, pp. 49-53 (2003).
[28] Lübben, J. F. and Johannsmann D., “Nanoscale High-Frequency Contact Mechanics using an AFM Tip and a Quartz Crystal Resonator,” Langmuir, Vol. 20, No.9, pp. 3698-3703 (2004).
[29] Komanduri, R., “Some Aspects of Machining with Negative Rake Tools Simulating Grinding,” International Journal of Machine Tool Design and Research, Vol. 11, pp.223-233 (1971).
[30] Tseng, A. A., Jou, S., Notargiacomo, A., and Chen, T. P., “Recent Developments in Tip-Based Nanofabrication and its Roadmap,” Journal of Nanoscience & Nanotechnology, Vol. 8, No. 5, pp. 2167–2186 (2008).
[31] Schumacher, H. W., Keyser, U. F., and Zeitler, U., “Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single-Electron Transistor,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 6, pp. 860-863 (2000).
[32] Fang, T. H., Weng, C. I., and Chang, J. G., “Machining Characterization of Nano-Lithography Process by using Atomic Force Microscopy,” Nanotechnology, Vol. 11, pp. 181-187 (2000).
[33] Wang, Z. Q., Jiao, N. D., Tung, S., and Dong, Z. L., “Research on the Atomic Force Microscopy-Based Fabrication of Nanochannels on Silicon Oxide Surfaces,” Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
[34] Tseng, A. A., “A Comparison Study of Scratch and Wear Properties using Atomic Force Microscopy,” Applied Surface Science, Vol. 256, No. 13, pp. 4246- 4252 (2010).
[35] Yan, Y. D., Sun, T., Liang, Y. C., and Dong, S., “Investigation on AFM Based Micro/Nano CNC Machining System,” International Journal of Machine Tools and Manufacture, Vol.47, No. 11, pp. 1651-1659 (2007).
[36] Lu, C., Mai, Y. W., Tam, P. L., and Shen, Y. G., “Nanoindentation-Induced Elastic-Plastic Transition and Size Effect in Α-Al2O3 (0001),” Philosophical Magazine Letters, Vol. 87, pp.409-415 (2007).
[37] Lin, Z. C. and Huang, J. C., “The Study of Estimation Method of Cutting Force for Conical Tool Under Nanoscale Depth of Cut by Molecular Dynamics,” Nanotechnology, Vol. 19, pp.115701-1 ~115701-13 (2008).
[38] Nga, C. K., Melkotea, S. N., Rahmanb, M., and Kumar, A. S., “Experimental Study of Micro- and Nano-Scale Cutting of Aluminum 7075-T6,” Machine Tools & Manufacture, Vol. 46, pp. 929-936 (2006).
[39] Fang, F. Z., Wu, H., and Lin, Y. C., “Modeling and Experimental Investigation on Nanometric Cutting of Monocrystalline Silicon,” International Journal of Machine Tools and Manufacture, Vol. 45, No. 15, pp. 1681-1686 (2005).
[40] Ogino, T., Nishimura, S., and Shirakashi, J., “Scratch Nanolithography on Si Surface using Scanning Probe Microscopy: Influence of Scanning Parameters on Groove Size,” Japanese Journal of Applied Physics, Vol. 47, No.1, pp. 712- 714 (2008).
[41] Chen Y. J., Hsu, J. H., and Lin, H. N., “Fabrication of Metal Nanowires by Atomic Force Microscopy Nanoscratching and Lift-Off Process,” Nanotechnology, Vol. 16, pp.1112-1115 (2005).
[42] Tseng, A. A., Shirakashi, J., Nishimura, S., Miyashita, K., and Notargiacomo, A., “Scratching Properties of Nickel-Iron Thin Film and Silicon using Atomic Force Microscopy,” Japanese Journal of Applied Physics, Vol. 106, No. 4, 044314-044318 (2009).
[43] Preston, F. W., “The Theory and Design of Plate Glass Polishing Machines,” Journal of the Society of Glass Technology, Vol. 11, pp.214-247 (1927).
[44] Cook, L. M., “Chemical Process in Glass Polishing,” Journal of Non-Crystalline Solids, Vol.120, pp.152-171 (1990).
[45] Yu, T. K., Yu, C. C., and Orlowski, M., “A Statistical Polishing Pad Model for Chemical Mechanical Polishing,” Proceedings of IEEE Int. Electron Devices Meeting, pp.865-868, Washington, DC, USA (1993).
[46] Yu, T. K., Yu, C. C., and Orlowski, M., “Combined Asperity Contact and Fluid Flow Model for Chemical Mechanical Polishing,” Proceedings of International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V, pp.29-34, Honolulu, Hawaii, USA (1994).
[47] Liu, C. W, Dai, B. T., Tseng, W. T., and Yeh, C. F., “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 143, pp.716-721 (1996).
[48] Chekina, O. G. and Keer, L. M., “Wear-Contact Problems and Modeling of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 145, pp.2100-2106 (1998).
[49] Xie, Y. and Bhushan, B., “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol. 200, pp.281-295 (1996).
[50] Jiang, J., Sheng, F., and Ren, F., “Modeling of Two-body Abrasive Wear under Mutliple Contact Condition, ” Wear, Vol. 217, pp.35-45 (1998).
[51] Jongwon, S., Cyriaque, P. S., Kim, A. T., Tichy, J. A., and Cale, T. S., “Multiscale Material Removal Modeling of Chemical Mechanical Polishing,” Wear, Vol. 254, pp.307-320(2003).
[52] Lin, Z. C. and Chen, C. C., “Method for Analyzing Effective Polishing Frequency and Times for Chemical Mechanical Planarization Polishing Wafer with Different Polishing Pad Profiles,” Journal of the Chinese Society of Mechanical Engineers, Vol.26, No.6, pp.671-676(2005).
[53] Masuda, T., Nagasawa, T., and Norimoto, R., “Method of Dividing Wafer into Individual Devices After Forming a Recessed Portion of the Wafer and Making Thickness of Wafer Uniform,” U.S. Patent, No. 7,439,162 B2 (2008).
[54]Lai, J. S., Pan, W. C., Fann, Y. J., Wang, Y. H., He, C. C., and Hsu, C. L., “Compensating Chemical Mechanical Wafer Polishing Apparatus and Method,” U.S. Patent, No. 6,685,543 (2004).
[55] Lin, Z. C., Huang, W. S., and Tsai, J. S., “A Study of Material Removal Amount of Sapphire Wafer in Application Chemical Mechanical Polishing with Different Polishing Pads,” Mechanical Science and Technology, Vol.26, No. 8, pp.2353-2364 (2012).
[56] Altshuller, G., The Innovation Algorithm: TRIZ, Systematic Innovation, and Technical Creativity, Technical Innovation Center, Inc. Worcester, MA (2000).
[57] Chang, H. T. and Chen, J. L. “An Approach Combining Extension Methodwith TRIZ for Innovative Product Design,” Journal of the Chinese Society of Mechanical Engineers, Vol.25, No.1, pp.13-22 (2004).
[58] Chang, H. T. and Chen, J. L., “The Conflict-Problem-Solving CAD Software Integrating TRIZ into Eco-Innovation,” Advances in Engineering Software, Vol.35, pp.553-566 (2004).
[59] Wang, H., Chen, G., and Lin, Z., “Algorithm of Integrating QFD and TRIZ for the Innovative Design Process,” International Journal of Computer Applications in Technology, Vol.23, No. 1, pp.2341-2352 (2005).
[60] Lin, Z. C. and Chen, C. C., “Innovation Procedure for Polishing Times Calculations of Compensated Cmp Using Multiple Steps of the Modified Triz Method,” International Journal of Innovative Computing Information and Control, Vol.5, No.8, pp.2311-2332 (2008).
[61] Han X., Hu, Y. Z., and Yu S. Y., “Investigation of Material Removal Mechanism of Silicon Wafer in the Chemical Mechanical Polishing Process using Molecular Dynamics Simulation Method,” Applied Physics A: Materials Science & Processing, Vol. 95, pp. 899–905 (2009).
[62] Dobrovinskaya, E. R., Lytvynov, L.A., and Pishchik, V., Sapphire: Material, Manufacturing, Applications, Springer Science and Business Media, New York, USA (2009).
[63] Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol. 114, pp. 687-690 (1959).
[64] Ermer, D. S., “Optimization of the Constrained Machining Economics Problem by Geometric Programming,” Transactions of ASME Journal of Engineering for Industry, Vol. 93, pp. 1067-1072 (1971).
[65] Graves, D. B. and Brault, P., “Molecular Dynamics for Low Temperature Plasma-Surface Interaction Studies,” Journal of Physics D: Applied Physics, Vol. 1, No. 11, pp. 1-88 (2008)
[66] Imafuku, M., Sasajima, Y., Yamamoto, R., and Doyama, M., “Computer Simulations of the Structures of the Metallic Superlattices Ad/Ni and Cd/Ni and their Elastic Moduli,” Journal of Physics F: Metal Physics, Vol. 16, No. 7, pp. 823- 829 (1986).
[67] Reklaitis, G. V., Engineering Optimization: Methods and Application, John Wiley, New York, USA (1983).
[68] Sandip, B., “On Spherical Nanoindentation Stress-Strain Curves, Creep and Kinking Nonlinear Elasticity in Brittle Hexagonal Single Crystals,” Ph. D. Thesis, Drexel University, Philadelphia, USA (2008).
[69] Zhao Y., Maietta D. M., and Chang L., “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology ,Vol. 122, No. 1, pp.86–93 (2000).
[70] Greenwood, J. A. and Williamson, J. B. P., “Contact of Nominally Flat Surfaces,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 295, No. 1442, pp.300-319 (1966).
[71] Luo, J. and Dornfeld, D. A., “Material Removal Mechanism in Chemical Mechanical Polishing,” IEEE Transaction on Semiconductor Manufacturing, Vol. 14, No. 2, (2001).
[72] Zhao, Y. and Chang, L., “A Micro-Contact and Wear Model for Chemical–Mechanical Polishing of Silicon Wafers,” Wear, Vol. 252, pp.220–226 (2002).
[73] Hertz, H., “Über die Berührung fester elastischer Köper (On the Contact of Elastic Solids),” Journal reine und angewandte Mathematik, Vol. 92, pp.156–171 (1882).
[74] Digital Instruments, Dimension™ 3100 Manual. Version 4.43B, Digital Instruments Veeco Metrology Group, New York, USA (2000).
[75] Sarid, D., Scanning Force Microscopy, Oxford University Press, New York, USA (1991).

無法下載圖示 全文公開日期 2018/07/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE