簡易檢索 / 詳目顯示

研究生: Nguyen Binh Nam
Nguyen - Binh Nam
論文名稱: 邊界導通模式數位控制升壓型功率因數修正轉換器之研製
Design and Implementation of Digitally Controlled Boost PFC Converter Under Boundary Conduction Mode
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 劉宇晨
Yu-Cheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 76
中文關鍵詞: 功率因數修正數位控制邊界導通模式
外文關鍵詞: Power factor correction, digital controller, boundary conduction mode
相關次數: 點閱:295下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

功率因數修正器已廣泛討論且應用在電源供應器。功率因數修正器目的是為了改善輸入電流波形並降低虛功率。在低功率應用上,升壓型功率因數修正器一般採取操作在非連續導通模式或者邊界導通模式。功率因數修正器操作在邊界導通模式的優點為可降低二極體逆向恢復損失之功耗以及簡易的控制策略。在此篇論文裡,一項無偵測輸入電壓且操作在邊界導通模式的數位控制升壓型功因修正轉換器被提出,此項控制技術是利用數位比例積分控制器來決定導通時間,而數位信號處理器中的比較器則係偵測電感電流零點來導通功率開關。最後實現200 W升壓型功因修正轉換器,以驗證所提出控制方法之可行性。


The use of power factor correction (PFC) converters is widely discussed and considered for most off-line power supplies. The aim of the power factor correction (PFC) converter is to shape the input current to minimize the reactive power. For low power applications, boost PFC converter operated in discontinuous conduction mode (DCM) or boundary conduction mode (BCM) is usually employed. The advantages of PFC operating with BCM are the reduction of reversal recovery loss of diode and the simple control. In this thesis, a digital-controlled method for boost PFC operating under BCM without input voltage sensing is proposed. For this proposed control method, the digital voltage PI controller is used for determined the constant on-time period and the comparator block inside the DSP is used to detect the zero-crossing of inductor current for turning on the main switch. A 200W boost PFC prototype is implemented and tested to verify the feasibility of the proposed control scheme.

摘要 i Abstract ii Acknowledgement iii Contents iv List of Figures vi List of Tables x List of Abbreviations xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of thesis 3 Chapter 2 Literature review 4 2.1 Power factor 4 2.2 Operation principle of boost PFC topology under boundary conduction mode 7 2.3 Modeling of analog BCM Boost PFC converter 17 Chapter 3 Digital control for BCM boost PFC converter 21 3.1 Constant on-time and zero current detection algorithm 22 3.2 Controller design 23 3.2.1 DSP hardware Timer Module Initiation 23 3.2.2 Comparator block 25 3.2.3 Design of the output voltage controller 27 3.3 Design of the feedback loop 28 3.4 Digital PI compensator design 29 3.5 Software implementation 31 3.6 Simulation of proposed design 33 Chapter 4 Implementation and experimental results 42 4.1 Boost PFC converter design 42 4.1.1 Design of the inductor 42 4.1.2 Design of the switch and diode 43 4.1.3 Design of the rectifier bridge diode 44 4.1.4 Design of output capacitor 44 4.2 Experimental results 45 Chapter 5 Conclusions and future works 62 5.1 Conclusions 62 5.2 Future works 62 Reference 63

[1] A.I. Pressman, K. Billings, T. Morey, "Switching Power Supply Design", McGraw-Hill, 2009.
[2] I. Bataseh, "Power Electronic Circuits" John Wiley & Sons Inc., 1st edition, 2004.
[3] C. Adragna, "L6561, Enhanced transition mode power factor corrector" AN966, ST Microelectronics Application Note, March, 2003.
[4] C. Ortmeyer and C. Adragna, "Design tips for L6561 power factor corrector in wide range" AN1214, ST Microelectronics Application Note, Dec. 2000.
[5] B. Choi, S. S. Hong, and H. Park, "Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit" IEEE Trans. Industrial Electron., vol. 48, no. 1, pp. 136-142, Feb. 2001.
[6] M. M. Jovanovic and Y. Jang, "State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview", IEEE Trans. Industrial Electron., vol. 52, no. 3, pp. 701-708, June 2005.
[7] J. W. Kim, H. S. Youn and G. W. Moon, "A Digitally Controlled Critical Mode Boost Power Factor Corrector With Optimized Additional On Time and Reduced Circulating Losses", IEEE Trans. on Power Electronics, vol. 30, No. 6, pp. 3447-3456, June 2015.
[8] Y. S. Lai, C. A Yeh and K. M. Ho, "A Family of Predictive Digital-Controlled PFC Under Boundary Current Mode Control", IEEE Trans. on Industrial Informatics, vol. 8, No. 3, pp. 448-458, August 2012.
[9] V. Bobal, J. Bohm, J. Fessl, and J. Machacek, "Digital Self-tuning Controllers," Springer, 2005 edition, May. 2005.
[10] Texas Instruments, "Piccolo™ Microcontrollers - Reference Guide", Datasheet, 2014.
[11] Texas Instruments, "TMS2803x Piccolo System Control and Interrupts - Reference Guide," Datasheet, May 2009.
[12] Texas Instruments, "TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module - Reference Guide", Datasheet, December 2008.
[13] Texas Instruments, "TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator Reference Guide", Datasheet, , December 2008.

無法下載圖示 全文公開日期 2019/08/17 (校內網路)
全文公開日期 2026/08/17 (校外網路)
全文公開日期 2026/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE