簡易檢索 / 詳目顯示

研究生: 李孟達
Li-Meng Da
論文名稱: 熱障塗層系統中 TGO 生長和 CMAS(鈣-鎂-鋁-矽酸鹽)侵蝕的綜合效應下的界面應力分析
Interfacial stress analysis of combined effect for TGO growth and CMAS (Calcium-Magnesium-Alumino-Silicates) infiltration in the thermal barrier coating system
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
黃育熙
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱障塗層(TBCs)熱生長氧化物 (TGO)鈣-鎂-鋁-矽酸(CMAS)
外文關鍵詞: Thermal barrier coatings (TBCs), thermally-grown oxide (TGO), (Calcium-Magnesium-Alumino-Silicates) CMAS
相關次數: 點閱:143下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱生長氧化物 TGO(Thermally Grown Oxide)生長和鈣鎂鋁矽酸鹽CMAS (Calcium-Magnesium-Aluminum-Silicate) 滲透是熱障塗層系統TBCs (Thermal Barrier Coating Systems) 中的兩種主要失效機制。需要注意的是,CMAS 在高溫下會迅速滲透到 TBCs 的孔隙中。在冷卻期間反應區周圍發生由相變引起的體積膨脹,當氧氣擴散到塗層中時會與鋁離子反應並生成氧化層,在高溫持續運行下氧化層變得越來越厚。在本篇研究,會先對比單一TC(Top-coat)層受CMAS侵蝕產生彎曲現象,彎曲高度的結果比對實驗與有限元素模擬的一致性,並將其參數匯入完整的塗層,並分析CMAS侵蝕與TGO生長合併前後對界面應力的影響。綜合效應的結果表明,在保溫階段CMAS侵蝕與TGO生長會造成不同方向的界面應力,導致CMAS侵蝕會抑制TGO生長的界面正向與剪應力,而在降溫階段相變化會抑制界面的剪應力然而會增加正向應力。因此,藉由此分析結果可以更全面了解CMAS侵蝕與TGO生長綜合影響機制。


    Thermally grown oxide (TGO) growth and calcium magnesium aluminum silicate (CMAS) infiltration are the two major failure mechanisms in thermal barrier coating systems (TBCs). It should be noted that CMAS rapidly infiltrates through the pores of TBCs at high temperature. During the cooling time, volume expansion around the reaction region would occur owing to phase transformation. When oxygen diffuses into the coating, it reacts with aluminum ion and generates oxide layer. The oxide layer becomes thicker and thicker when coating system continually operates at high temperature. In this study, the result of the buckling height of free-standing attack by CMAS was used to demonstrate the consistency of the experiment and the finite element simulation. And then, this article investigates the combined effect of CMAS and TGO on the interface stress. The results show that CMAS infiltration and TGO growth will generate interfacial stress in opposite directions during the holding time, that is, CMAS infiltration will restrict the interfacial stress induced by TGO growth. The phase transformation will restrict the interfacial shear stress and enhance the interfacial normal stress between the TC and TGO interface during the cooling time. Therefore, this investigation can entirely demonstrate the combined effect of TGO and CMAS as well as predict the damage evolution along the interface.

    中文摘要 II ABSTRACT III 致謝 IV 圖目錄 VII 表目錄 XI 第一章 緒論 12 1.1 前言 12 1.2 研究規劃 23 第二章 CMAS侵蝕 28 2.1 單層TC模型 28 2.1.1 有限元素模型 29 2.1.2 環境溫度設置 29 2.1.3 邊界條件 29 2.1.4 材料參數設置 30 2.1.5 模擬CMAS的入侵 32 2.1.6 模擬與實驗結果比較 39 2.1.7有無發生相變化塗層的模擬結果 42 2.2 完整 SPS 模型模擬 44 2.2.1有限元素模型 44 2.2.2材料參數 44 2.2.3環境溫度設置 44 2.2.4邊界條件 45 2.2.5不同CMAS侵蝕深度 45 2.2.6觀測點 46 2.3模擬結果 48 2.3.1兩個觀測點的模擬結果 48 2.3.2不同CMAS侵蝕深度、不同相變化膨脹率的模擬結果 50 第三章 TGO生長 55 3.1 TGO生長 55 3.1.1 有限元素模型 56 3.1.2 環境溫度設置 56 3.1.3 邊界條件 56 3.1.4 材料參數設定 56 3.1.5模擬 TGO 的生長 57 3.2 模擬結果 60 3.2.1 TGO厚度 60 3.2.2兩個觀測點的模擬結果 62 3.2.3不同基板溫度的模擬結果 64 第四章 綜合效應 67 4.1 綜合效應 67 4.1.1 有限元素模型 67 4.1.2 環境溫度設置 67 4.1.3 邊界條件 67 4.1.4 材料參數 67 4.2模擬結果 68 4.2.1兩個觀測點的模擬結果 68 4.2.2 TGO生長、CMAS侵蝕與綜合效應的比較 69 4.2.3不同基板溫度與不同CMAS侵蝕深度的模擬結果 72 第五章 結論 78 第六章 未來展望 80 附件 實驗模型 81 A.1 實驗設計 82 A.2 實驗步驟 84 A.2.1試件的製備 83 A.2.2高溫實驗 85 A.3 實驗結果 86 A.3.1初步實驗 87 參考文獻 95

    [1] Clarke, D. R., Oechsner, M., & Padture, N. P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. MRS bulletin, 37(10), 891-898.
    [2] Vasireddi, R., & Mahapatra, D. R. (2018). Micro-crack pinning and interfacial fracture in mixed metal oxide reinforced epoxy nanocomposite. Journal of Materials Engineering and Performance, 27(11), 5938-5946.
    [3] 郭巍, et al. 航空发动机用热障涂层的 CMAS 侵蚀及防护. 现代技术陶瓷,
    2017, 38.3: 159-174.
    [4] Bernard, B., Quet, A., Bianchi, L., Joulia, A., Malié, A., Schick, V., & Rémy, B. (2017). Thermal insulation properties of YSZ coatings: suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS). Surface and Coatings Technology, 318, 122-128.
    [5] Kumar, V., & Balasubramanian, K. (2016). Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Progress in Organic Coatings, 90, 54-82.
    [6] Hu, Z. C., Liu, B., Wang, L., Cui, Y. H., Wang, Y. W., Ma, Y. D., ... & Yang, Y. (2020). Research progress of failure mechanism of thermal barrier coatings at high temperature via finite element method. Coatings, 10(8), 732.
    [7] Karaoglanli, A. C., Doleker, K. M., Demirel, B., Turk, A., & Varol, R. (2015). Effect of shot peening on the oxidation behavior of thermal barrier coatings. Applied Surface Science, 354, 314-322.
    [8] Ni, L. Y., Wu, Z. L., & Zhou, C. G. (2011). Effects of surface modification on isothermal oxidation behavior of HVOF-sprayed NiCrAlY coatings. Progress in Natural Science: Materials International, 21(2), 173-179.
    [9] Bäker, M. (2012). Finite element simulation of interface cracks in thermal barrier coatings. Computational materials science, 64, 79-83.
    [10] Song, J., Qi, H., Shi, D., Yang, X., & Li, S. (2019). Effect of non-uniform growth of TGO layer on cracking behaviors in thermal barrier coatings: A numerical study. Surface and Coatings Technology, 370, 113-124.
    [11] Evans, A. G., Mumm, D. R., Hutchinson, J. W., Meier, G. H., & Pettit, F. S. (2001). Mechanisms controlling the durability of thermal barrier coatings. Progress in materials science, 46(5), 505-553.
    [12] Zhu, W., Zhang, Z. B., Yang, L., Zhou, Y. C., & Wei, Y. G. (2018). Spallation of thermal barrier coatings with real thermally grown oxide morphology under thermal stress. Materials & Design, 146, 180-193.

    [13] Shan, X., Zou, Z., Gu, L., Yang, L., Guo, F., Zhao, X., & Xiao, P. (2016). Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Materialia, 113, 71-74.
    [14] Yang, S., Song, W., Lavallee, Y., Zhou, X., Dingwell, D. B., & Guo, H. (2020). Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings. Corrosion Science, 170, 108659.
    [15] Krämer, S., Faulhaber, S., Chambers, M., Clarke, D. R., Levi, C. G., Hutchinson, J. W., & Evans, A. G. (2008). Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering: A, 490(1-2), 26-35.
    [16] Su, L., Chen, X., & Wang, T. J. (2015). Numerical analysis of CMAS penetration induced interfacial delamination of transversely isotropic ceramic coat in thermal barrier coating system. Surface and Coatings Technology, 280, 100-109.
    [17] Garces, H. F., Senturk, B. S., & Padture, N. P. (2014). In situ Raman spectroscopy studies of high-temperature degradation of thermal barrier coatings by molten silicate deposits. Scripta Materialia, 76, 29-32.
    [18] Chevalier, J., Gremillard, L., Virkar, A. V., & Clarke, D. R. (2009). The tetragonal‐monoclinic transformation in zirconia: lessons learned and future trends. Journal of the American Ceramic Society, 92(9), 1901-1920.
    [19] Zhenwei, C. A. I., ZHANG, Z., Liu, Y., Zhao, X., & Wang, W. (2021). A numerical study about the effect of non-uniform CMAS penetration on the TGO growth and interface stress behavior of APS TBCs.
    [20] Jackson, R. W., Zaleski, E. M., Poerschke, D. L., Hazel, B. T., Begley, M. R., & Levi, C. G. (2015). Interaction of molten silicates with thermal barrier coatings under temperature gradients. Acta Materialia, 89, 396-407.
    [21] Shan, X., Zou, Z., Gu, L., Yang, L., Guo, F., Zhao, X., & Xiao, P. (2016). Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Materialia, 113, 71-74.
    [22] Xu, G. N., Yang, L., Zhou, Y. C., Pi, Z. P., & Zhu, W. (2019). A chemo-thermo-mechanically constitutive theory for thermal barrier coatings under CMAS infiltration and corrosion. Journal of the Mechanics and Physics of Solids, 133, 103710.
    [23] Rösler, J., Bäker, M., & Volgmann, M. (2001). Stress state and failure mechanisms of thermal barrier coatings: role of creep in thermally grown oxide. Acta materialia, 49(18), 3659-3670.

    [24] Dong, H., Yang, G. J., Li, C. X., Luo, X. T., & Li, C. J. (2014). Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma‐sprayed TBC s. Journal of the American Ceramic Society, 97(4), 1226-1232.
    [25] Ranjbar-Far, M., Absi, J., Shahidi, S., & Mariaux, G. (2011). Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings system. Materials & Design, 32(2), 728-735.
    [26] Li, B., Fan, X., Zhou, K., & Wang, T. J. (2017). Effect of oxide growth on the stress development in double-ceramic-layer thermal barrier coatings. Ceramics International, 43(17), 14763-14774.
    [27] Borom, M. P., Johnson, C. A., & Peluso, L. A. (1996). Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 86, 116-126.

    QR CODE