簡易檢索 / 詳目顯示

研究生: 周冠廷
Guan-Ting Zhou
論文名稱: 以雙模態左手合成傳輸線實現多款整合信號回溯/波束切換相位陣列天線
Integrated Retrodirective/Beam-switching Phased Arrays Using Dual-mode Left-handed Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 張嘉展
Chia-Chan Chang
瞿大雄
Tah-Hsiung Chu
曾昭雄
Chao-Hsiung Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: 交叉跨線枝幹耦合器雙模態操作合成傳輸線信號回溯陣列波束切換陣列范艾達陣列巴特勒矩陣異質整合陣列天線系統
外文關鍵詞: crossover, branch-line coupler, dual-mode, Left-handed synthesized transmission line, retrodirective, beam-switching, Van Atta array, Butler matrix, heterogeneous integrated phased array
相關次數: 點閱:461下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出兩款雙模態相位陣列天線系統之整合,其低頻帶為信號回溯陣列,而高頻帶則為波束切換陣列。其主要餽入網路電路設計並無引入主動元件,且與過去本團隊所提之整合相位陣列系統之電氣特性恰為互補(低頻帶為波束切換陣列,高頻帶為信號回溯陣列),俾使兩系統可相互結合,供無線感測網路之應用。
為實現該雙模態相位陣列系統,本論文提出兩款具LC諧振器之雙模態左手合成傳輸線。該合成傳輸線係以線電感、平行板電容、串聯LC諧振器與表面黏著電容所組成。構成合成線之串聯LC諧振器可於共振時提供虛接地之傳輸零點,並進一步使合成傳輸線於特定頻率具有開路輸入阻抗,以自動隱暱系統之特定電路區塊。此獨特特性乃為構成雙模態陣列操作之主要核心。
將兩款合成傳輸線進行整合,吾人成功實現該整合陣列餽入電路之核心元件:雙模態枝幹耦合器及雙模態交叉跨線。將餽入電路與其它輔助元件如:天線、增益放大器、環路器及切換器等進行整合,即可完成該雙模態相位陣列之完整系統。經輻射場型之實驗量測,充分驗證其信號回溯與波束切換之功能。
本論文之最後一部份,乃將前述兩互補系統共同佈建於空間中,經注入調變機制,初步實現及驗證此雙模態相位陣列之應用面。
本論文詳盡討論此創新系統架構之設計概念、電路佈局,及模擬與量測結果,並進行適當分析討論。


Without the need of active switches, two heterogeneous integrated retrodirective/beam-switching phased arrays are developed in this thesis. The proposed design behaves identical to a reflection-type retrodirective array or a Van Atta retrodirective array in the lower band, but automatically turns into a beam-switching array based on a Butler matrix in the upper band. The operation states of the two arrays are complementary to the one developed by our group which got published in 2013 (beam-switching mode in the lower band and retrodirective mode in the upper band).
The key building blocks to successfully implement the unique phased arrays, namely the dual-mode branch-line couplers and dual-mode crossovers, are introduced. These essential blocks are realized by newly developed left-handed synthesized transmission lines consisting of quasi-lumped line inductors, parallel-plate capacitors, series LC tanks, and SMD capacitors in microstrip form.
By integrating the core blocks and a number of auxiliary commercial components, the dual-mode phased array system is realized. The circuit responses and radiation characteristics of the arrays are validated through experiments.
Finally, an integration of the aforementioned two sorts of phased arrays is performed with proper modulation scheme as data streams. This experiment preliminarily validates the promising potential of the proposed idea as signal relay nodes in an ad-hoc wireless sensor network.

摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究貢獻 4 1.4 論文組織 5 第二章 整合信號回溯/波束切換相位陣列天線 7 2.1 前言 7 2.2 電路架構與設計原理 8 2.2.1 反射式信號回溯陣列/巴特勒矩陣 8 2.2.2 范艾達陣列/巴特勒矩陣 13 2.3 結語 18 第三章 整合信號回溯/波束切換相位陣列天線之構成元件 19 3.1 前言 19 3.2 雙模態左手合成傳輸線 19 3.2.1 左手合成傳輸線A 19 3.2.2 左手合成傳輸線B 28 3.3 雙模態枝幹耦合器 34 3.3.1 枝幹耦合器A 34 3.4 雙模態交叉跨線 38 3.4.1 交叉跨線A 38 3.4.2 交叉跨線B 42 3.5 雙頻帶元件 45 3.5.1 雙頻帶枝幹耦合器 45 3.5.2 雙頻帶交叉跨線 48 3.6 輔助元件 51 3.6.1 天線 51 3.6.2 增益放大器 56 3.6.3 環路器 59 3.6.4 切換器 62 3.7 結語 64 第四章 整合信號回溯/波束切換相位陣列天線之實驗驗證 65 4.1 前言 65 4.2 反射式信號回溯陣列/巴特勒矩陣 65 4.2.1 電路驗證 65 4.2.1.1 低頻帶系統之電氣響應 67 4.2.1.2 高頻帶系統之電氣響應 70 4.2.2 輻射場型量測驗證 74 4.2.2.1 低頻帶系統之輻射場型量測 74 4.2.2.2 高頻帶系統之輻射場型量測 79 4.3 范艾達陣列/巴特勒矩陣 82 4.3.1 電路驗證 82 4.3.1.1 低頻帶系統之電氣響應 83 4.3.1.2 高頻帶系統之電氣響應 87 4.3.2 輻射場型量測驗證 90 4.3.2.1 低頻帶系統之輻射場型量測 90 4.3.2.2 高頻帶系統之輻射場型量測 92 4.4 結語 93 第五章 點對點收發系統之初步驗證 94 5.1 前言 94 5.2 架構與原理 94 5.3 實驗驗證 97 5.4 結語 100 第六章 結論 101 6.1 總結 101 6.2 未來發展 101 參考文獻 103 著作列表 107

[1] J.-Y. Zou, C. H. Wu, and T.-G. Ma, “Heterogeneous integrated beam-switching/retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
[2] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206-211, Jan. 2012.
[3] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542-547, Feb. 2003.
[4] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970-2976, Jul. 2006.
[5] J. A. Vitaz, A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-reflective array at 26 GHz,” IEEE Trans. Antennas Propaga., vol. 58, no. 11, pp. 3539-3544, Nov. 2010.
[6] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[7] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764-1773, Aug. 2008.
[8] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154-164, Jan. 2004.
[9] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465-469, Mar. 2001.
[10] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658-1662, Sept. 2001.
[11] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.
[12] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206–211, Jan. 2012.
[13] S. N. Hsieh and T. H. Chu, “Linear Retro-directive array antenna using 90° hybrids,” IEEE Trans. Antennas Propaga., vol. 56, no. 6, pp. 1573-1580, Jun. 2008.
[14] S. J. Chung, S. M. Chen and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
[15] Y.-J. Ren and K. Chang, “New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2970–2976, Jul. 2006.
[16] J. A. Vitaz, A. M. Buerkle, and K. Sarabandi, “Tracking of metallic objects using retro-reflective array at 26 GHz,” IEEE Trans. Antennas Propaga., vol. 58, no. 11, pp. 3539–3544, Nov. 2010.
[17] L. Chiu, Q. Xue, and C. H. Chan, “Phase-conjugated arrays using low conversion-loss resistive phase-conjugating mixers and stub-loaded patch antennas,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp.1764–1773, Aug. 2008.
[18] S. C. Yen and T. H. Chu, “A Retro-directive array antenna with phase conjugation circuit using sub-harmonically injection-locked self-oscillating mixers,” IEEE Trans. Antennas Propaga., vol. 52, no. 1, pp. 154–164, Jan. 2004.
[19] T. Brabetz, V.F. Fusco, and S. Karode, “Balanced subharmonic mixers for retrodirective-array applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 465–469, Mar. 2001.
[20] R. Y. Miyamoto, Y. Qian, and T. Itoh, “An active integrated retrodirective transponder for remote information retrieval-on-demand,” IEEE Trans. Microw. Theory Tech., vol. 49, no.9, pp. 1658–1662, Sept. 2001.
[21] R. Y. Miyamoto and T. Itoh, “Retrodirective arrays for wireless communications,” IEEE Microw. Mag., vol. 3, pp. 71–79, Mar. 2002.
[22] S.-J Chung, T.-C. Chou, and Y.-N Chiu, “A novel card-type transponder designed using retrodirective antenna array,” in IEEE MTT-S Int. Microwave Symp. Dig., pp.1123–1126, 2001.
[23] H. Matsumoto, “Research on solar power satellites and microwave power transmission in japan,” IEEE Microw. Mag., vol. 3, no. 4, pp.36–45, Dec. 2002.
[24] S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[25] M. Cohn, “A millimeter wave retrodirective transponder for collision/obstacle avoidance and navigation/location,” in Proc. IEEE-IEE Vehicle Navigation Information Systems Conf., Ottawa, ON, Canada, pp.534–538, Oct. 1993.
[26] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A Double Layer Substrate Integrated Waveguide Blass Matrix for Beamforming Applications,” IEEE Trans Microw. Wireless Compon. Lett., vol.19, no.6, pp. 374-376, Jun. 2009.
[27] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Planar ku-Band 4 × 4 Nolen Matrix in SIW Technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259-266, Feb. 2010.
[28] T. N. Kaifas, J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications,” IEEE Antennas Propagt. Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.
[29] C.-C. Chang, R.-H. Lee, and T.-Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antennas Propaga., vol. 58, no. 2, pp. 367–374, Feb. 2010.
[30] A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, and C. L. Goldsmith, “X-band RF MEMS phase shifters for phased array applications,” IEEE Microwave and Guided Wave Lett., vol. 9. no. 12, pp. 517–519, Dec. 1999.
[31] J.-W. Tsai, C.-H. Wu, and T.-G. Ma, "Novel dual-mode retrodirective array using synthesized microstrip lines," IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375-3388, Dec. 2011.

[32] 蕭辰源,「創新異質整合三模態相位陣列之研究」,碩士論文,國立台灣科技大學,民國一百零二年。
[33] H. Kim, B. Lee, and M.-J. Park, “Dual-band branch-line coupler with port extensions,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 651–655, Mar. 2010.
[34] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.
[35] http://www.digikey.com/Web%20Export/Supplier%20Content/Crystek_744/PDF/Crystek_CRBAMP_100_6000.pdf?redirected=1
[36] http://www.woken.com.tw/products/0150A06A5C001C/0150A06A5C001C_Spec.pdf
[37] http://www.woken.com.tw/products/0130A18204001B/0130A18204001B_Spec_RevC.pdf
[38] http://micro-mve.com/index.php?action=product_detail&down_id=594&ntype=3
[39] http://www.micro-mve.com/index.php?action=product_detail&path=347_536&id=1878

QR CODE