簡易檢索 / 詳目顯示

研究生: 鄭偉湖
Bary Leonard Suwandi
論文名稱: 創新嚴謹反應循環蒸餾程序之模擬研究
An Innovative Approach to Rigorous Simulation for Reactive Cyclic Distillation Processes
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 游承修
Cheng-Hsiu Yu
余柏毅
Bor-Yih Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 194
外文關鍵詞: reactive cyclic distillation, separate phase movement
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Cyclic distillation technology has received increasing attention in recent times due to its potential to yield several advantages, including decreased energy consumption, stage reduction, enhanced separation performance, and improved overall efficiency. This technique for process intensification relies on separate phase movement (SPM) in periodic operation, which involves alternating the flow of vapor and liquid to maximize the separation driving force and minimize the mixing of liquids with different compositions. Reactive cyclic distillation (RCD) seeks to further intensify reaction-separation systems by integrating cyclic operation into reactive distillation technology. The purpose of this study is to present a rigorous simulation approach for reactive cyclic distillation using the Aspen Plus DynamicsTM simulator. Methyl acetate (MeAc) production and butyl acetate (BuAc) production via RCD columns were chosen as the target processes to be investigated in this work. The RCD columns were modeled using a series of CSTR and FLASH modules. The quasi-stationary steady-state – where the variables are repeated every cycle – was successfully achieved for both systems. The results show that the same production specifications with the conventional system for MeAc process and BuAc process can be achieved with annual operational cost savings of 9% and 14.6%, respectively, when cyclic operation is employed. Furthermore, control properties of both systems are investigated and compared to the respective control performance of conventional RD. The findings indicate that RCD columns exhibit good resilience against disturbances, albeit with a relatively slower response compared to conventional RD columns. Thus, RCD technology exhibits the potential to deliver significantly improved separation performance, reduce the required number of stages, and lower energy consumption while meeting desired product specifications.

ACKNOWLEDGEMENTS i ABSTRACT ii TABLE OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xi CHAPTER I. INTRODUCTION 1 1.1. Background 1 1.2. Literature Review 3 1.2.1. Principle of cyclic distillation 3 1.2.2. Development of cyclic distillation equipment 15 1.2.3. Design methodology and development of mathematical model 22 1.2.4. Recent studies on simulation of reactive cyclic distillation 27 1.3. Research Motivation and Purpose 33 1.4. Organization of Thesis 34 CHAPTER II. THERMODYNAMIC AND KINETIC MODELS 36 2.1. Thermodynamic and Kinetic Models Selection for Methyl Acetate Production 36 2.1.1. Thermodynamic properties of MeAc process 36 2.1.2. Vapor-liquid equilibrium (VLE) of MeAc process 39 2.1.3. Kinetic model of MeAc System 41 2.2. Thermodynamic and Kinetic Models Selection for Butyl Acetate Production 42 2.2.1. Thermodynamic properties of BuAc process 42 2.2.2. Vapor-liquid equilibrium (VLE) of BuAc process 45 2.2.3. Kinetic model of BuAc process 48 CHAPTER III. METHODOLOGY 50 3.1. Modelling Process 50 3.2. Stage Configuration 56 3.3. Operation Strategy 60 3.4. Plant-wide Control Structure and Operation Strategy 64 3.5. Control Scheme and PID Controller 66 3.5.1. Proportional-Integral-Derivative (PID) controller 66 3.5.2. Non-square relative gain (NRG) 67 3.5.3. Relative gain array (RGA) 68 3.5.4. Auto-tune variation (ATV) relay feedback tuning 69 3.6. Model Validation 70 CHAPTER IV. SIMULATION OF EQUIVALENT REACTIVE CYCLIC DISTILLATION COLUMN 72 4.1. Methyl Acetate Process 72 4.1.1. Conventional reactive distillation for MeAc process 72 4.1.2. Cycle time determination for MeAc reactive cyclic distillation process 76 4.1.3. Equivalent reactive cyclic distillation for MeAc process 80 4.2. Butyl Acetate Process 92 4.2.1. Conventional reactive distillation for BuAc process 92 4.2.2. Cycle time determination for BuAc reactive cyclic distillation process 96 4.2.3. Equivalent reactive cyclic distillation for BuAc process 99 CHAPTER V. OPTIMIZATION OF REACTIVE CYCLIC DISTILLATION COLUMN 111 5.1. Optimization of RCD Column for Methyl Acetate Process 111 5.1.1. Stage reduction of MeAc equivalent reactive cyclic distillation column 111 5.1.2. Catalyst reduction of MeAc equivalent reactive cyclic distillation column 116 5.1.3. Improved RCD column configuration for MeAc process 117 5.2. Optimization of RCD Column for Butyl Acetate Process 130 5.2.1. Stage reduction of BuAc equivalent reactive cyclic distillation column 130 5.2.2. Catalyst reduction of BuAc equivalent reactive cyclic distillation column 134 5.2.3. Improved RCD column configuration for BuAc process 135 CHAPTER VI. PROCESS CONTROL AND DISTURBANCE TEST 148 6.1. Process Control of Cyclic Distillation 148 6.2. Process Control and Disturbance Test for MeAc Process 149 6.2.1. Open-loop sensitivity analysis, NRG, and RGA for MeAc improved RCD column 149 6.2.2. Controller parameter tuning for MeAc improved RCD column 153 6.2.3. Disturbance tests for MeAc improved RCD column 156 6.3. Process Control and Disturbance Test for BuAc Process 163 6.3.1. Open-loop sensitivity analysis, NRG, and RGA for BuAc improved RCD column 163 6.3.2. Controller parameter tuning for BuAc improved RCD column 166 6.3.3. Disturbance tests for BuAc improved RCD column 171 CHAPTER VII. CONCLUSION AND FUTURE WORK 179 7.1. Conclusion 179 7.2. Future Work 181 REFERENCES 182 APPENDIX 189

[1] Abrams, D. S., & Prausnitz, J. M. (1975). Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 21(1), 116–128. https://doi.org/10.1002/aic.690210115
[2] Álvarez, V., Mattedi, S., Iglesias, M., Gonzalez-Olmos, R., & Resa, J. (2011). Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. Physics and Chemistry of Liquids, 49(1), 52–71. https://doi.org/10.1080/00319100903012403
[3] Amezaga, S. A., & Biarge, J. F. (1973). Thermodynamic study of the binary systems containing acetic acid and an alcohol in vapor liquid equilibrium. Anales de Quimica, 69, 569.
[4] Aspen Technology, Inc. (2017). Aspen Dynamics 12.1 User Guide. https://esupport.aspentech.com/S_Article?id=000054306
[5] Aspen Technology, Inc. (2017). Aspen Plus 12.1 User Guide. https://esupport.aspentech.com/S_Article?id=000064707
[6] Bedryk, O., Shevchenko, A., Mishchenko, O., Maleta, V. N., & Kiss, A. A. (2023). Industrial experience in using cyclic distillation columns for food grade alcohol purification. Chemical Engineering Research and Design, 192, 102–109. https://doi.org/10.1016/j.cherd.2023.02.026
[7] Bîldea, C. S., Pătruţ, C., Jørgensen, S. B., Abildskov, J., & Kiss, A. A. (2016). Cyclic distillation technology - a mini-review. Journal of Chemical Technology & Biotechnology, 91(5), 1215–1223. https://doi.org/10.1002/jctb.4887
[8] Cannon, M. R. (1961). Controlled Cycling Improves Various Processes. Industrial & Engineering Chemistry, 53(8), 629–629. https://doi.org/10.1021/ie50620a021
[9] Chang, J. W., & Yu, C. C. (1990). The relative gain for non-square multivariable systems. Chemical Engineering Science, 45(5), 1309–1323. https://doi.org/10.1016/0009-2509(90)87123-a
[10] Cheng, J. K., Lee, H. Y., Huang, H. P., & Yu, C. C. (2009). Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers, 40(2), 188–196. https://doi.org/10.1016/j.jtice.2008.10.003
[11] Cho, T. H., Ochi, K., & Kojima, K. (1983). Measurement of vapor-liquid equilibrium for systems with limited miscibility. Fluid Phase Equilibria, 11(2), 137–152. https://doi.org/10.1016/0378-3812(83)80054-5
[12] Douglas, J. M. (1988). Conceptual Design of Chemical Processes. https://doi.org/10.1604/9780070177628
[13] Fazlollahi, F., & Wankat, P. (2020). Cyclic Operation of Flash and Column Flash Distillation. Industrial & Engineering Chemistry Research, 59(50), 21914–21929. https://doi.org/10.1021/acs.iecr.0c04266
[14] Furzer, I. A. (1980). Mass transfer in a periodically cycled plate column fitted with a manifold. Chemical Engineering Science, 35(6), 1299–1305. https://doi.org/10.1016/0009-2509(80)85122-0
[15] Furzer, I. A. (1978). The discrete residence time distribution of a distillation column operated with microprocessor controlled periodic cycling. The Canadian Journal of Chemical Engineering, 56(6), 747–750. https://doi.org/10.1002/cjce.5450560616
[16] Gangadwala, J., Kienle, A., Stein, E., & Mahajani, S. (2004). Production of Butyl Acetate by Catalytic Distillation: Process Design Studies. Industrial & Engineering Chemistry Research, 43(1), 136–143. https://doi.org/10.1021/ie021011z
[17] Gangadwala, J., Mankar, S., Mahajani, S., Kienle, A., & Stein, E. (2003). Esterification of Acetic Acid with Butanol in the Presence of Ion-Exchange Resins as Catalysts. Industrial & Engineering Chemistry Research, 42(10), 2146–2155. https://doi.org/10.1021/ie0204989
[18] Gaska, R. A., & Cannon, M. R. (1961). Controlled Cycling Distillation in Sieve and Screen Plate Towers. Industrial & Engineering Chemistry, 53(8), 630–631. https://doi.org/10.1021/ie50620a022
[19] Gel’perin, N. I., Polotskii, L. M., & Potapov, T. G. (1975). Operation of a bubble-cap fractionating column in a cyclic regime. Chemical and Petroleum Engineering, 11(8), 707–709. https://doi.org/10.1007/bf01150146
[20] Gmehling, J., & Onken, U. (1977). VAPOR-LIQUID EQUILIBRIUM DATA COLLECTION: Aqueous-Organic Systems. DECHEMA Chemistry Data Series. Vol.1, Part 1. DECHEMA: Frankfurt, Germany.
[21] Goss, D. W., & Furzer, I. A. (1980). Mass transfer in periodically cycled plate columns containing multiple sieve plates. AIChE Journal, 26(4), 663–669. https://doi.org/10.1002/aic.690260418
[22] Hang, C., Astrom, K., & Wang, Q. (2002). Relay feedback auto-tuning of process controllers — a tutorial review. Journal of Process Control, 12(1), 143–162. https://doi.org/10.1016/s0959-1524(01)00025-7
[23] Huang, H. P., Chien, I. L., & Lee, H. Y. (2012). Plantwide Control of a Reactive Distillation Process. Plantwide Control, 319–338. https://doi.org/10.1002/9781119968962.ch15
[24] Huang, S. G., Kuo, C. L., Hung, S. B., Chen, Y. W., & Yu, C. C. (2004). Temperature control of heterogeneous reactive distillation. AIChE Journal, 50(9), 2203–2216. https://doi.org/10.1002/aic.10247
[25] Huss, R. S., Chen, F., Malone, M. F., & Doherty, M. F. (2003). Reactive distillation for methyl acetate production. Computers & Chemical Engineering, 27(12), 1855–1866. https://doi.org/10.1016/s0098-1354(03)00156-x
[26] Kaymak, D. B., & Luyben, W. L. (2006). Evaluation of a two-temperature control structure for a two-reactant/two-product type of reactive distillation column. Chemical Engineering Science, 61(13), 4432–4450. https://doi.org/10.1016/j.ces.2006.01.050
[27] Kiss, A. A. (2013). Advanced Distillation Technologies: Design, Control and Applications. Wiley-Blackwell. https://doi.org/10.1002/9781118543702
[28] Kiss, A. A., Jobson, M., & Gao, X. (2018). Reactive Distillation: Stepping Up to the Next Level of Process Intensification. Industrial & Engineering Chemistry Research, 58(15), 5909–5918. https://doi.org/10.1021/acs.iecr.8b05450
[29] Lee, H. Y., & Hsiao, T. L. (2017). Design and Simulation of Reactive Distillation Processes. Chemical Engineering Process Simulation, 311–353. https://doi.org/10.1016/b978-0-12-803782-9.00014-5
[30] Lee, H. Y., Lee, Y. C., Chien, I. L., & Huang, H. P. (2010). Design and Control of a Heat-Integrated Reactive Distillation System for the Hydrolysis of Methyl Acetate. Industrial & Engineering Chemistry Research, 49(16), 7398–7411. https://doi.org/10.1021/ie9016754
[31] Lee, H. Y., Yen, L. T., Chien, I. L., & Huang, H. P. (2009). Reactive Distillation for Esterification of an Alcohol Mixture Containing n-Butanol and n-Amyl Alcohol. Industrial & Engineering Chemistry Research, 48(15), 7186–7204. https://doi.org/10.1021/ie801891q
[32] Lewis, W. K. (1936). Rectification of Binary mixtures. Industrial & Engineering Chemistry, 28(4), 399–402. https://doi.org/10.1021/ie50316a005
[33] Liţă, I., Bîldea, C. S., & Kiss, A. (2012). Modeling, Design and Control of Cyclic Distillation Systems. Procedia Engineering, 42, 1202–1213. https://doi.org/10.1016/j.proeng.2012.07.512
[34] Lladosa, E., Montón, J. B., Burguet, M. C., & Muñoz, R. (2007). Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa. Journal of Chemical & Engineering Data, 53(1), 108–115. https://doi.org/10.1021/je700411p
[35] Luyben, M. L., Tyreus, B. D., & Luyben, W. L. (1996). Analysis of Control Structures for Reaction/Separation/Recycle Processes with Second-Order Reactions. Industrial & Engineering Chemistry Research, 35(3), 758–771. https://doi.org/10.1021/ie950262n
[36] Luyben, M. L., Tyreus, B. D., & Luyben, W. L. (1997). Plantwide control design procedure. AIChE Journal, 43(12), 3161–3174. https://doi.org/10.1002/aic.690431205
[37] Luyben, W. L., & Yu, C. C. (2008). Reactive Distillation Design and Control. Wiley-AIChE. https://doi.org/10.1604/9780470226124
[38] Luyben, W. L., Pszalgowski, K. M., Schaefer, M. R., & Siddons, C. (2004). Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate. Industrial & Engineering Chemistry Research, 43(25), 8014–8025. https://doi.org/10.1021/ie040167r
[39] Maleta, & Maleta. (2012). Mass-exchange contact device (US8333940B2). U.S. Patent and Trademark Office. https://patents.google.com/patent/US8333940B2/en
[40] Maleta, B. V., Shevchenko, A., Bedryk, O., & Kiss, A. A. (2015). Pilot-scale studies of process intensification by cyclic distillation. AIChE Journal, 61(8), 2581–2591. https://doi.org/10.1002/aic.14827
[41] Maleta, V. N., Kiss, A. A., Taran, V., & Maleta, B. V. (2011). Understanding process intensification in cyclic distillation systems. Chemical Engineering and Processing - Process Intensification, 50(7), 655–664. https://doi.org/10.1016/j.cep.2011.04.002
[42] Matsubara, M., Watanabe, N., & Kurimoto, H. (1985). Binary periodic distillation scheme with enhanced energy conservation—I. Chemical Engineering Science, 40(5), 715–721. https://doi.org/10.1016/0009-2509(85)85024-7
[43] Matsubara, M., Watanabe, N., Kurimoto, H., & Shimizu, K. (1985). Binary periodic distillation scheme with enhanced energy conservation—II. Chemical Engineering Science, 40(5), 755–758. https://doi.org/10.1016/0009-2509(85)85028-4
[44] McWhirter, J. R., & Cannon, M. R. (1961). Controlled Cycling Distillation in a Packed-Plate Column. Industrial & Engineering Chemistry, 53(8), 632–634. https://doi.org/10.1021/ie50620a023
[45] McWhirter, J. R., & Lloyd, W. A. (1963). Controlled cycling in distillation and extraction. Chem. Eng. Prog., 59(6), 58.
[46] Onken, U. (1995). Azeotropic Data Part I, Part II. Von J. Gmehling, J. Menke, J. Krafczyk und K. Fischer. VCH-Verlagsgesellschaft mbH, Weinheim 1994. 1780 Seiten, 2 Bände, geb., DM 638,- (Kpl.). Chemie Ingenieur Technik, 67(5), 623–623. https://doi.org/10.1002/cite.330670531
[47] Pătruţ, C., Bîldea, C. S., & Kiss, A. A. (2014). Catalytic cyclic distillation – A novel process intensification approach in reactive separations. Chemical Engineering and Processing: Process Intensification, 81, 1–12. https://doi.org/10.1016/j.cep.2014.04.006
[48] Pătruţ, C., Bîldea, C. S., Liţă, I., & Kiss, A. A. (2014). Cyclic distillation – Design, control and applications. Separation and Purification Technology, 125, 326–336. https://doi.org/10.1016/j.seppur.2014.02.006
[49] Peng, Y., & Lu, X. (2014). Isobaric Vapor–Liquid Equilibria for Water + Acetic Acid + 1-Ethyl-3-methylimidazolium Diethylphosphate at 101.32 kPa. Journal of Chemical & Engineering Data, 59(2), 250–256. https://doi.org/10.1021/je400282h
[50] Pöpken, T., Götze, L., & Gmehling, J. (2000). Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis. Industrial & Engineering Chemistry Research, 39(7), 2601–2611. https://doi.org/10.1021/ie000063q
[51] Pöpken, T., Steinigeweg, S., & Gmehling, J. (2001). Synthesis and Hydrolysis of Methyl Acetate by Reactive Distillation Using Structured Catalytic Packings: Experiments and Simulation. Industrial & Engineering Chemistry Research, 40(6), 1566–1574. https://doi.org/10.1021/ie0007419
[52] Rasmussen, J. B., Mansouri, S. S., Zhang, X., Abildskov, J., & Huusom, J. K. (2020). A mass and energy balance stage model for cyclic distillation. AIChE Journal, 66(8). https://doi.org/10.1002/aic.16259
[53] Rasmussen, J. B., Mansouri, S. S., Zhang, X., Abildskov, J., & Kjøbsted Huusom, J. (2021). Analysing separation and reaction stage performance in a reactive cyclic distillation process. Chemical Engineering and Processing - Process Intensification, 167, 108515. https://doi.org/10.1016/j.cep.2021.108515
[54] Rasmussen, J. B., Stevnsborg, M., Mansouri, S. S., Zhang, X., Abildskov, J., & Huusom, J. K. (2022). Quantitative metrics for evaluating reactive cyclic distillation performance. Chemical Engineering and Processing - Process Intensification, 174, 108843. https://doi.org/10.1016/j.cep.2022.108843
[55] Renon, H., & Prausnitz, J. M. (1969). Estimation of Parameters for the NRTL Equation for Excess Gibbs Energies of Strongly Nonideal Liquid Mixtures. Industrial & Engineering Chemistry Process Design and Development, 8(3), 413–419. https://doi.org/10.1021/i260031a019
[56] Rius, A., Otero, J., & Macarron, A. (1959). Equilibres liquide—vapeur de mélanges binaires donnant une réaction chimique: systèmes méthanol—acide acétique ; éthanol—acide acétique ; n-propanol—acide acétique ; n-butanol—acide acétique. Chemical Engineering Science, 10(1–2), 105–111. https://doi.org/10.1016/0009-2509(59)80029-4
[57] Rivas, O. R. (1977). An Analytical Solution of Cyclic Mass Transfer Operations. Industrial & Engineering Chemistry Process Design and Development, 16(3), 400–405. https://doi.org/10.1021/i260063a026
[58] Robinson, R. G., & Engel, A. J. (1967). ANALYSIS OF CONTROLLED CYCLING MASS TRANSFER OPERATIONS. Industrial & Engineering Chemistry, 59(3), 22–29. https://doi.org/10.1021/ie51402a007
[59] Sawistowski, H., & Pilavakis, P. A. (1982). Vapor-liquid equilibrium with association in both phases. multicomponent systems containing acetic acid. Journal of Chemical and Engineering Data, 27, 64-71.
[60] Schrodt, V., Sommerfeld, J., Martin, O., Parisot, P., & Chien, H. (1967). Plant-scale study of controlled cyclic distillation. Chemical Engineering Science, 22(5), 759–767. https://doi.org/10.1016/0009-2509(67)80089-7
[61] Sommerfeld, J. T., Schrodt, V. N., Parisot, P. E., & Chien, H. H. (1966). Studies of Controlled Cyclic Distillation: I. Computer Simulations and the Analogy with Conventional Operation. Separation Science, 1(2–3), 245–279. https://doi.org/10.1080/01496396608049447
[62] Song, W., Venimadhavan, G., Manning, J. M., Malone, M. F., & Doherty, M. F. (1998). Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis. Industrial & Engineering Chemistry Research, 37(5), 1917–1928. https://doi.org/10.1021/ie9708790
[63] Steinigeweg, S., & Gmehling, J. (2002). n-Butyl Acetate Synthesis via Reactive Distillation: Thermodynamic Aspects, Reaction Kinetics, Pilot-Plant Experiments, and Simulation Studies. Industrial & Engineering Chemistry Research, 41(22), 5483–5490. https://doi.org/10.1021/ie020179h
[64] Szonyi, L., & Furzer, I. A. (1985). Periodic cycling of distillation columns using a new tray design. AIChE Journal, 31(10), 1707–1713. https://doi.org/10.1002/aic.690311013
[65] Tang, Y. T., Chen, Y. W., Huang, H. P., Yu, C. C., Hung, S. B., & Lee, M. J. (2005). Design of reactive distillations for acetic acid esterification. AIChE Journal, 51(6), 1683–1699. https://doi.org/10.1002/aic.10519
[66] Toftegård, B., & Jørgensen, S. B. (1987). Design algorithm for periodic cycled binary distillation columns. Industrial & Engineering Chemistry Research, 26(5), 1041–1043. https://doi.org/10.1021/ie00065a032
[67] Toftegård, B., & Jørgensen, S. B. (1987). Operational principles for periodic cycled operation. IChemE Symposium Series, 104, 473–482.
[68] Toftegård, B., & Jørgensen, S. B. (1988). Stationary profiles for periodic cycled separation columns: linear case. Industrial & Engineering Chemistry Research, 27(3), 481–485. https://doi.org/10.1021/ie00075a018
[69] Toftegård, B., Clausen, C. H., Jørgensen, S. B., & Abildskov, J. (2016). New Realization of Periodic Cycled Separation. Industrial & Engineering Chemistry Research, 55(6), 1720–1730. https://doi.org/10.1021/acs.iecr.5b03911
[70] Towler, G., & Sinnott, R. (2012). Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Butterworth-Heinemann.
[71] Turton, R., Bailie, R. C., Shaeiwitz, J. A., & Whiting, W. B. (1998). Analysis, Synthesis and Design of Chemical Processes.
[72] U.S. Dept. of Energy, Office of Energy Efficiency and Renewable Energy. (2001). “Distillation Column Modelling Tools”. Retrieved June 26, 2023, from https://www1.eere.energy.gov/manufacturing/resources/chemicals/pdfs/distillation.pdf
[73] Venimadhavan, G., Malone, M. F., & Doherty, M. F. (1999). A Novel Distillate Policy for Batch Reactive Distillation with Application to the Production of Butyl Acetate. Industrial & Engineering Chemistry Research, 38(3), 714–722. https://doi.org/10.1021/ie9804273
[74] Yang, X., Li, H., Cao, C., Zou, Z., Xu, L., & Liu, G. (2019). Isobaric Vapor–Liquid Equilibrium for the Binary System of Dimethyl Adipate and 1,6-Hexanediol at 10, 20, and 99 kPa. Journal of Chemical & Engineering Data, 64(10), 4256–4263. https://doi.org/10.1021/acs.jced.9b00306
[75] Zhang, Z., Hu, A., Zhang, T., Zhang, Q., Sun, M., Sun, D., & Li, W. (2015). Separation of methyl acetate + methanol azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilibria, 401, 1–8. https://doi.org/10.1016/j.fluid.2015.04.018
[76] Ziegler, J. G., & Nichols, N. B. (1942). Optimum Settings for Automatic Controllers. Journal of Fluids Engineering, 64(8), 759–765. https://doi.org/10.1115/1.4019264
[77] Zuo, C., Pan, L., Cao, S., Li, C., & Zhang, S. (2014). Catalysts, Kinetics, and Reactive Distillation for Methyl Acetate Synthesis. Industrial & Engineering Chemistry Research, 53(26), 10540–10548. https://doi.org/10.1021/ie500371c

無法下載圖示
全文公開日期 2028/07/26 (校外網路)
全文公開日期 2028/07/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE