簡易檢索 / 詳目顯示

研究生: 沈智閔
Shen - Chih Min
論文名稱: 乙醇對培養之人類口腔癌細胞造成細胞凋亡效應之研究
Effects of Ethanol on Apoptosis of Cultured Human Oral Cells
指導教授: 李曉屏
Shiao-ping Lee
白孟宜
Meng-Yi Bai
口試委員: 江建平
Chiang, Chien ping
王正康
Wang, Jehng-Kang
洪伯達
Po, Da Hong
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 100
中文關鍵詞: 酒精活性氧化物細胞凋亡
外文關鍵詞: Apoptosis, ethanol, reactive oxygen species
相關次數: 點閱:305下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在多細胞生物的生長發育和維持恆定的過程中,細胞死亡和細胞增生具有相同的重要性。細胞凋亡是一種擁有獨特生化機制和形態變化的細胞死亡模式,又稱為細胞程式化死亡。細胞凋亡可以防止變異或不需要的細胞增生,但在調控機轉異常情況下,將導致細胞不受控制的增長,這也是癌症難以治療的原因。
乙醇是酒精飲料中主要的成分,在人體飲入的乙醇主要是經由醇及醛脫氫酶 (ADH、ALDH) 所分解代謝,兩種酶族在細胞中扮演解毒酶的角色,它們均有多種同功酶存在,在組織的活性和表現與乙醇的代謝效應有關,並進而影響乙醇對器官傷害的發生。乙醇會抑制細胞正常的生理功能與細胞生長,促使細胞走向凋亡的路徑;乙醇代謝的產物乙醛,是主要具有細胞毒性與致癌性的化合物,它可以與DNA共價形成加成產物,誘發基因突變;另外,乙醇氧化時,所產生的氧化壓力傷害也會影響與細胞凋亡相關基因的表現。
本研究目的為以人類口腔癌細胞 (OEC-M1) 及皮膚角化細胞 (HaCaT) 為實驗對象,探討經乙醇處理後,乙醇與其代謝產物乙醛及代謝過程產生之氧化壓力,所造成的細胞凋亡效應。並進一步了解代謝過程中ADH及ALDH在細胞凋亡效應下所扮演的角色。
聚丙烯醯胺膠等電焦集電泳、西方點墨法結果顯示人類口腔癌細胞在ADH酶族中主要表現ADH4;在ALDH酶族方面,ALDH2為主要表現型,ALDH3A1次之,ALDH1A1則最弱。西方點墨法分析,發現乙醇會誘使細胞產生凋亡反應,其中HaCaT 細胞凋亡蛋白表現量相較於OEC-M1來的高。另外在加入ADH及ALDH抑制劑後,結果顯示細胞代謝過程主要是由於乙醛的堆積造成細胞產生凋亡反應。螢光冷光儀分析結果顯示乙醇氧化代謝所產生的活性氧化物,會造成細胞受到氧化壓力的傷害,進而產生細胞凋亡效應。特別在細胞經乙醇處理後並抑制ALDH代謝條件下,有大量的活性氧化物產生,細胞凋亡蛋白大量的表現。然而這個機轉會因為加入活性氧化物清除劑 (Dithiothreitol, DTT) 而受到抑制,因此,研究結果顯示針對OEC-M1、HaCaT這兩株細胞中,乙醇經由ADH代謝成乙醛會產生氧化壓力並對細胞產生凋亡反應,而乙醛的堆積亦是主要誘導細胞產生凋亡反應的原因。


Apoptosis, also known as programmed cell death, plays an important role to maintain the proper numbers and type of cells. It is belived that cancer cells not only gain DNA mutation but also are resistant to apoptosis. Ethanol is the main ingredient of alcoholic beverages. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes responsible for ethanol metabolism. Ethanol can inhibit cell growth and physiological functions of cells and further induce apoptosis. Acetaldehyde, the major metabolic intermediate of ethanol, is the main cytotoxic and carcinogenic molecule to trigger the formation to DNA adducts and DNA mutation. Therefore ethanol could play a crucial role in oral cancer formation.
The purpose of this thesis is focusing on the effects driven by ethanol and its metabolites in oral cancer cells. Our results demonstrate that ADH4 and ALDH2 are the major isozymes in oral cancer cells (OEC-M1) by isoelectric focusing and western blotting. ALDH1A1 and ALDH3A1 also are detected weakly in OEC-M1. Western blot showed that ethanol can induce cells to undergo apoptosis, however the percentage of apoptosis is higher in HaCaT cells than in OEC-M1 cells. When adding ADH and ALDH inhibitors, the accumulation of acetaldehyde could enhance the amount of apoptosis. Fluorescent analysis results also indicate that ROS is induced by ethanol and further induce apoptosis in OEC-M1 and HaCaT cells because of oxidative stress. Especially, after treatment of ethanol and ADH inhibitor, there will be a dramatic elevation of reactive oxidative species and apoptosis. However, the induction can be suppressed by ROS scavenger (Dithiothreitol, DTT). We conclude that in OEC-M1 and HaCaT cells, ethanol can induce cells to undergo apoptosis through ROS which is generated by ethanol and its metabolite, acetaldehyde.

表目錄 圖目錄 縮寫表 中文摘要 英文摘要 第一章 緒論 第一節酒精之代謝 一、參與乙醇 (ethanol) 代謝之酶系統 二、人類醇脫氫酶族 (ADH) 三、人類醛脫氫酶族 (ALDH) 四、乙醇代謝與細胞傷害 五、酒精代謝產生之活性氧化物 第二節活性氧化物 (ROS) 一、氧自由基 (oxygen radicals) 的來源 二、活性氧化物造成損傷的機制 三、對活性氧化物的防禦機制 四、活性氧化物與細胞凋亡 (apoptosis) 第三節細胞凋亡 一、細胞凋亡與生長恆定 (homeostasis) 二、細胞凋亡反應的變化 三、細胞凋亡可能的機制及其相關之蛋白 第四節選擇人類口腔細胞為實驗模式 第五節實驗目的 第二章 實驗材料與方法 第一節 實驗材料 一、化學藥品 二、試劑及抗體 三、實驗儀器 四、緩衝液及SDS-PAGE之製備 五、培養液之製備 第二節 實驗方法 一、細胞培養 二、藥物處理 三、細胞凋亡之分析: Hoechst 33258染色 四、西方點墨法 (western blot) 五、活性氧化物的偵測 (ROS)28 六、聚丙烯醯胺膠等電焦集電泳 (IEF) 七、酶活性染色 八、蛋白質濃度之測定 九、人類重組醇及醛脫氫酶族酶活性之測定 十、比活性之計算 十一、人類口腔細胞醇及醛脫氫酶族蛋白質之偵測 十二、統計分析 第三章 實驗結果 第一節口腔細胞ADH及ALDH之活性 第二節口腔細胞ADH及ALDH之表現型 第三節口腔細胞ADH及ALDH之蛋白質表現 第四節乙醇對口腔細胞所造成細胞凋亡效應之影響 第五節評估乙醇之代謝物乙醛,對口腔細胞造成細胞凋亡效應之影響 第六節評估乙醇代謝過程產生之氧化壓力,對口腔細胞所造成細胞凋亡效應之影響 第四章 討論 第五章 結論 第六章 未來計畫 第七章 參考文獻

1.Lieber, C.S., Alcohol and the liver: 1994 update. Gastroenterology, 1994. 106 (4) : p. 1085-105.
2.Bosron, W.F., T. Ehrig, and T.K. Li, Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis, 1993. 13 (2) : p. 126-35.
3.Duester, G., et al., Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol, 1999. 58 (3) : p. 389-95.
4.Sladek, N.E., Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol, 2003. 17 (1) : p. 7-23.
5.Han, C.L., et al., Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family--implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem, 1998. 254 (1) : p. 25-31.
6.Dong, Y.J., T.K. Peng, and S.J. Yin, Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth. Alcohol, 1996. 13 (3) : p. 257-62.
7.Yokoyama, A. and T. Omori, Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Jpn J Clin Oncol, 2003. 33 (3) : p. 111-21.
8.Chen, C.C., et al., Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am J Hum Genet, 1999. 65 (3) : p. 795-807.
9.Lee, S.L., J.O. Hoog, and S.J. Yin, Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism. Pharmacogenetics, 2004. 14 (11) : p. 725-32.
10.Vasiliou, V., et al., Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics, 1999. 9 (4) : p. 421-34.
11.Sophos, N.A. and V. Vasiliou, Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact, 2003. 143-144: p. 5-22.
12.Yoshida, A., et al., Human aldehyde dehydrogenase gene family. Eur J Biochem, 1998. 251 (3) : p. 549-57.
13.Kurys, G., W. Ambroziak, and R. Pietruszko, Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J Biol Chem, 1989. 264 (8) : p. 4715-21.
14.Yin, S.J., et al., Alcohol and aldehyde dehydrogenases in human esophagus: comparison with the stomach enzyme activities. Alcohol Clin Exp Res, 1993. 17 (2) : p. 376-81.
15.Forte-McRobbie, C.M. and R. Pietruszko, Purification and characterization of human liver "high Km" aldehyde dehydrogenase and its identification as glutamic gamma-semialdehyde dehydrogenase. J Biol Chem, 1986. 261 (5) : p. 2154-63.16.Jakoby, W.B. and D.M. Ziegler, The enzymes of detoxication. J Biol Chem, 1990. 265 (34) : p. 20715-8.
17.Manning, F.C. and S.R. Patierno, Apoptosis: inhibitor or instigator of carcinogenesis? Cancer Invest, 1996. 14 (5) : p. 455-65.
18.Kurose, I., et al., Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology, 1997. 25 (2) : p. 368-78.
19.Brooks, P.J., DNA damage, DNA repair, and alcohol toxicity--a review. Alcohol Clin Exp Res, 1997. 21 (6) : p. 1073-82.
20.Wu, D. and A.I. Cederbaum, Ethanol-induced apoptosis to stable HepG2 cell lines expressing human cytochrome P-4502E1. Alcohol Clin Exp Res, 1999. 23 (1) : p. 67-76.
21.Fernandez-Checa, J.C., A. Colell, and C. Garcia-Ruiz, S-Adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol, 2002. 27 (3) : p. 179-83.
22.Homann, N., Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol, 2001. 6 (4) : p. 309-323.
23.Donohue, T.M., Jr., et al., Use of cultured cells in assessing ethanol toxicity and ethanol-related metabolism. Alcohol Clin Exp Res, 2001. 25 (5 Suppl ISBRA) : p. 87S-93S.
24.Badger, T.M., et al., Alcohol metabolism: role in toxicity and carcinogenesis. Alcohol Clin Exp Res, 2003. 27 (2) : p. 336-47.
25.Peng, G.S., et al., Involvement of acetaldehyde for full protection against alcoholism by homozygosity of the variant allele of mitochondrial aldehyde dehydrogenase gene in Asians. Pharmacogenetics, 1999. 9 (4) : p. 463-76.
26.Seitz, H.K., et al., Alcohol and cancer. Alcohol Clin Exp Res, 2001. 25 (5 Suppl ISBRA) : p. 137S-143S.
27.Fang, J.L. and C.E. Vaca, Detection of DNA adducts of acetaldehyde in peripheral white blood cells of alcohol abusers. Carcinogenesis, 1997. 18 (4) : p. 627-32.
28.Zimmerman, B.T., et al., Mechanisms of acetaldehyde-mediated growth inhibition: delayed cell cycle progression and induction of apoptosis. Alcohol Clin Exp Res, 1995. 19 (2) : p. 434-40.
29.Jankala, H., et al., Combined calcium carbimide and ethanol treatment induces high blood acetaldehyde levels, myocardial apoptosis and altered expression of apoptosis-regulating genes in rat. Alcohol Alcohol, 2002. 37 (3) : p. 222-8.
30.Kono, H., et al., Ebselen prevents early alcohol-induced liver injury in rats. Free Radic Biol Med, 2001. 30 (4) : p. 403-11.
31.Wheeler, M.D., et al., The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med, 2001. 31 (12) : p. 1544-9.
32.Turrens, J.F. and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J, 1980. 191 (2) : p. 421-7.
33.Brandt, U. and B. Trumpower, The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol, 1994. 29 (3) : p. 165-97.
34.Cunningham, C.C., W.B. Coleman, and P.I. Spach, The effects of chronic ethanol consumption on hepatic mitochondrial energy metabolism. Alcohol Alcohol, 1990. 25 (2-3) : p. 127-36.
35.Moslen, M.T., Reactive oxygen species in normal physiology, cell injury and phagocytosis. Adv Exp Med Biol, 1994. 366: p. 17-27.
36.Maddipati, K.R. and L.J. Marnett, Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem, 1987. 262 (36) : p. 17398-403.
37.Wei, Y.H., et al., Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann N Y Acad Sci, 1998. 854: p. 155-70.
38.Esterbauer, H. and K.H. Cheeseman, Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol, 1990. 186: p. 407-21.
39.Ricci, C., et al., Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol, 2008. 294 (2) : p. C413-22.
40.Zangar, R.C., D.R. Davydov, and S. Verma, Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol, 2004. 199 (3) : p. 316-31.
41.Renehan, A.G., S.P. Bach, and C.S. Potten, The relevance of apoptosis for cellular homeostasis and tumorigenesis in the intestine. Can J Gastroenterol, 2001. 15 (3) : p. 166-76.
42.Ellis, H.M. and H.R. Horvitz, Genetic control of programmed cell death in the nematode C. elegans. Cell, 1986. 44 (6) : p. 817-29.
43.Horvitz, H.R., Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res, 1999. 59 (7 Suppl) : p. 1701s-1706s.
44.Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26 (4) : p. 239-57.
45.Thompson, C.B., Apoptosis in the pathogenesis and treatment of disease. Science, 1995. 267 (5203) : p. 1456-62.
46.Miyashita, T., et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994. 9 (6) : p. 1799-805.
47.Polverini, P.J. and J.E. Nor, Apoptosis and predisposition to oral cancer. Crit Rev Oral Biol Med, 1999. 10 (2) : p. 139-52.
48.Barinaga, M., Cell suicide: by ICE, not fire. Science, 1994. 263 (5148) : p. 754-6.
49.Neuman, M.G., et al., Ethanol signals for apoptosis in cultured skin cells. Alcohol, 2002. 26 (3) : p. 179-90.
50.Raff, M.C., Social controls on cell survival and cell death. Nature, 1992. 356 (6368) : p. 397-400.
51.Eguchi, Y., S. Shimizu, and Y. Tsujimoto, Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res, 1997. 57 (10) : p. 1835-40.
52.Labarca, C. and K. Paigen, A simple, rapid, and sensitive DNA assay procedure. Anal Biochem, 1980. 102 (2) : p. 344-52.
53.McCarthy, N.J. and G.I. Evan, Methods for detecting and quantifying apoptosis. Curr Top Dev Biol, 1998. 36: p. 259-78.
54.Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992. 119 (3) : p. 493-501.
55.Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995. 184 (1) : p. 39-51.
56.Patel, T., G.J. Gores, and S.H. Kaufmann, The role of proteases during apoptosis. FASEB J, 1996. 10 (5) : p. 587-97.
57.Thornberry, N.A. and Y. Lazebnik, Caspases: enemies within. Science, 1998. 281 (5381) : p. 1312-6.
58.Soengas, M.S., et al., Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science, 1999. 284 (5411) : p. 156-9.
59.Van Cruchten, S., et al., Scanning electron microscopic changes of the canine uterine luminal surface during oestrus and late metoestrus. Reprod Domest Anim, 2002. 37 (3) : p. 121-6.
60.Barve, S.S., et al., Mechanisms of alcohol-mediated CD4+ T lymphocyte death: relevance to HIV and HCV pathogenesis. Front Biosci, 2002. 7: p. d1689-96.
61.Nicholls, D.G. and M.W. Ward, Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci, 2000. 23 (4) : p. 166-74.
62.Zamzami, N. and G. Kroemer, The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol, 2001. 2 (1) : p. 67-71.
63.Ishii, H., et al., Role of apoptosis in alcoholic liver injury. Alcohol Clin Exp Res, 2003. 27 (7) : p. 1207-12.
64.Li, L., et al., A novel hydroxamic acid compound, BMD188, demonstrates anti-prostate cancer effects by inducing apoptosis. I: In vitro studies. Anticancer Res, 1999. 19 (1A) : p. 51-60.
65.Cory, S. and J.M. Adams, The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002. 2 (9) : p. 647-56.
66.Miyashita, T. and J.C. Reed, bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res, 1992. 52 (19) : p. 5407-11.
67.Lowe, S.W. and A.W. Lin, Apoptosis in cancer. Carcinogenesis, 2000. 21 (3) : p. 485-95.
68.Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998. 94 (4) : p. 491-501.
69.Orrenius, S., B. Zhivotovsky, and P. Nicotera, Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003. 4 (7) : p. 552-65.
70.Nakagawa, T., et al., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000. 403 (6765) : p. 98-103.
71.Chen, Y.C., et al., Alcohol metabolism and cardiovascular response in an alcoholic patient homozygous for the ALDH2*2 variant gene allele. Alcohol Clin Exp Res, 1999. 23 (12) : p. 1853-60.
72.Vogelstein, B. and K.W. Kinzler, p53 function and dysfunction. Cell, 1992. 70 (4) : p. 523-6.
73.Hsieh, L.L., et al., Characteristics of mutations in the p53 gene in oral squamous cell carcinoma associated with betel quid chewing and cigarette smoking in Taiwanese. Carcinogenesis, 2001. 22 (9) : p. 1497-503.
74.Krajewski, S., et al., Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res, 1995. 55 (19) : p. 4471-8.
75.Boyle, P., et al., Epidemiology of mouth cancer in 1989: a review. J R Soc Med, 1990. 83 (11) : p. 724-30.
76.Bagnardi, V., et al., Alcohol consumption and the risk of cancer: a meta-analysis. Alcohol Res Health, 2001. 25 (4) : p. 263-70.
77.Stoll, C., et al., Prognostic significance of apoptosis and associated factors in oral squamous cell carcinoma. Virchows Arch, 2000. 436 (2) : p. 102-8.
78.Birchall, M., et al., Apoptosis and mitosis in oral and oropharyngeal epithelia: evidence for a topographical switch in premalignant lesions. Cell Prolif, 1996. 29 (8) : p. 447-56.
79.Elwood, J.M., et al., Alcohol, smoking, social and occupational factors in the aetiology of cancer of the oral cavity, pharynx and larynx. Int J Cancer, 1984. 34 (5) : p. 603-12.
80.Montoliu, C., et al., Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J Neurochem, 1994. 63 (5) : p. 1855-62.
81.Yao, C.T., C.S. Liao, and S.J. Yin, Human hepatic alcohol and aldehyde dehydrogenases: genetic polymorphism and activities. Proc Natl Sci Counc Repub China B, 1997. 21 (3) : p. 106-11.
82.Baraona, E., et al., Lack of alcohol dehydrogenase isoenzyme activities in the stomach of Japanese subjects. Life Sci, 1991. 49 (25) : p. 1929-34.
83.Matsumoto, M., et al., Retinoic acid formation from retinol in the human gastric mucosa: role of class IV alcohol dehydrogenase and its relevance to morphological changes. Am J Physiol Gastrointest Liver Physiol, 2005. 289 (3) : p. G429-33.
84.Pappa, A., et al., Human aldehyde dehydrogenase 3A1 inhibits proliferation and promotes survival of human corneal epithelial cells. J Biol Chem, 2005. 280 (30) : p. 27998-8006.
85.Lindahl, R., Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol, 1992. 27 (4-5) : p. 283-335.
86.Hoek, J.B. and J.G. Pastorino, Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol, 2002. 27 (1) : p. 63-8.
87.Muto, M., et al., Risk of multiple squamous cell carcinomas both in the esophagus and the head and neck region. Carcinogenesis, 2005. 26 (5) : p. 1008-12.
88.Li, S.Y., et al., Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothelial cells: role of ERK and p38 mitogen-activated protein kinase. J Biol Chem, 2004. 279 (12) : p. 11244-52.
89.Chandrasekaran, K., et al., In vitro evidence for chronic alcohol and high glucose mediated increased oxidative stress and hepatotoxicity. Alcohol Clin Exp Res, 2012. 36 (6) : p. 487-95.
90.Chandrasekaran, K., et al., Increased oxidative stress and toxicity in ADH and CYP2E1 overexpressing human hepatoma VL-17A cells exposed to high glucose. Integr Biol (Camb) , 2012. 4 (5) : p. 550-63.
91.Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 2010. 48 (6) : p. 749-62.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE