簡易檢索 / 詳目顯示

研究生: 何旻致
Min-Chih Ho
論文名稱: 應用連續式熱裂解反應系統處理酯化製程廢棄物之研究
Study on Treatment of Residues of Esterification Process via Continuous Pyrolysis System
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
蔡伸隆
Shen-Long Tsai
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 固體廢棄物酯化製程熱裂解旋窯反應器
外文關鍵詞: solid waste, esterification process, pyrolysis, rotary kiln reactor
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT II 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 熱化學轉化技術的種類 4 2.1.1 燃燒化學反應技術 4 2.1.2 氣化化學反應技術 4 2.1.3 熱裂解反應技術 5 2.1.4 熱化學資源化技術比較 6 2.2 熱裂解技術於不同溫度特性比較 8 2.2.1 慢速裂解 9 2.2.2 快速裂解 9 2.2.3 閃速裂解 10 2.3 高分子熱裂解機制 11 2.3.1 生物質熱裂解機制 12 2.3.2 聚丙烯酸酯與丙烯酸鈉裂解機制 13 2.3.3 裂解產物生成機制 13 2.4 熱裂解化學反應器簡介 15 2.4.1 固定床反應器 15 2.4.2 流體化床反應器 16 2.4.3 燒蝕反應器 17 2.4.4 微波反應器 18 2.4.5 電漿反應器 19 2.4.6 真空熱裂解反應器 20 2.4.7 旋轉錐反應器 21 2.4.8 螺桿反應器 22 2.4.9 迴轉窯反應器 23 2.4.10 熱裂解反應器比較 24 2.5 熱裂解產物後處理技術 26 2.5.1 粒狀汙染物捕集原理 26 2.5.2 粒狀汙染物控制設備 27 2.5.3 酸鹼氣體污染防治設備 31 第三章 研究方法 34 3.1 實驗規劃 34 3.2 實驗藥品 36 3.3 實驗設備與分析儀器 36 3.3.1 實驗設備 36 3.3.2 分析儀器 37 3.4 熱裂解系統 39 3.4.1 批次熱裂解反應器 39 3.4.2 連續式熱裂解反應器 41 第四章 結果與討論 43 4.1 原料特性分析及熱裂解可行性評估 43 4.2 批次熱裂解系統 45 4.2.1 裂解溫度於批次系統中對產物之影響 45 4.2.2 反應時間於批次系統中對產物之影響 50 4.2.3 載氣流量於批次系統中對於產物之影響 52 4.3 連續式熱裂解系統 53 4.3.1 連續式反應器設計 53 4.3.2 裂解溫度於連續系統中生成產物之影響 57 4.3.3 顆粒屬性於連續系統中裂解效能之影響 60 4.3.4 滯留時間於連續系統中裂解程度之影響 61 4.3.5 連續式反應器最佳連續操作參數 62 4.3.6 丙烯酸濃縮固廢裂解後固體產物分析 63 4.4 連續式熱裂解系統操作成本及經濟效益評估 66 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 71 第六章 參考文獻 73

    1. 行政院環境保護署事業廢棄物申報及管理資訊系統." 109年事業廢棄物申報量統計報告" https://waste.epa.gov.tw/RWD/Statistics/?page=Year1.
    2. Hupa, M., O. Karlström, and E. Vainio, Biomass combustion technology development – It is all about chemical details. Proceedings of the Combustion Institute, 2017. 36(1): p. 113-134.
    3. McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 2002. 83(1): p. 37-46.
    4. 崑鼎電子報. "氣化技術當紅,傳統焚化退場?廢棄物處理設施利弊分析.". https://www.ecove.com/e-newsletter/?l=CH&no=001&cat=key-technology&article=01
    5. Basu, P., Biomass gasification, pyrolysis and torrefaction: practical design and theory. 2018: Academic press.
    6. Wang, G., et al., A Review of Recent Advances in Biomass Pyrolysis. Energy & Fuels, 2020. 34(12): p. 15557-15578.
    7. 台灣電力公司. "火力發電歷年占比.". https://www.taipower.com.tw/tc/page.aspx?mid=202&cid=129&cchk=675cea43-9c45-4ae1-80c6-4f18b3b38d8e
    8. Tsui, T.-H. and J.W. Wong, A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 2019. 1: p. 151-167.
    9. Seo, M.W., et al., Recent advances of thermochemical conversion processes for biorefinery. Bioresource Technology, 2022. 343: p. 126109.
    10. Onay, O. and O.M. Kockar, Slow, fast and flash pyrolysis of rapeseed. Renewable energy, 2003. 28(15): p. 2417-2433.
    11. Bridgwater, A.V., Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 2012. 38: p. 68-94.
    12. Pawelczyk, E., I. Wysocka, and J. Gębicki, Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts, 2022. 12(4): p. 362.
    13. Shen, J., et al., Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel, 2009. 88(10): p. 1810-1817.
    14. Neves, D., et al., Characterization and prediction of biomass pyrolysis products. Progress in energy and combustion Science, 2011. 37(5): p. 611-630.
    15. Bridgwater, A.V., D. Meier, and D. Radlein, An overview of fast pyrolysis of biomass. Organic geochemistry, 1999. 30(12): p. 1479-1493.
    16. Xu, C. and T. Etcheverry, Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel, 2008. 87(3): p. 335-345.
    17. Czernik, S. and A. Bridgwater, Overview of applications of biomass fast pyrolysis oil. Energy & fuels, 2004. 18(2): p. 590-598.
    18. Bu, Q., et al., A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource technology, 2012. 124: p. 470-477.
    19. Ighalo, J.O., et al., Flash pyrolysis of biomass: a review of recent advances. Clean Technologies and Environmental Policy, 2022. 24(8): p. 2349-2363.
    20. Canabarro, N., et al., Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, 2013. 1: p. 1-10.
    21. Dwivedi, P., et al., Non-biodegradable polymeric waste pyrolysis for energy recovery. Heliyon, 2019. 5(8): p. e02198.
    22. Kaminsky, W., M. Predel, and A. Sadiki, Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polymer degradation and stability, 2004. 85(3): p. 1045-1050.
    23. Czech, Z. and R. Pełech, The thermal degradation of acrylic pressure-sensitive adhesives based on butyl acrylate and acrylic acid. Progress in organic coatings, 2009. 65(1): p. 84-87.
    24. Okoye, C.O., et al., Manufacturing of carbon black from spent tyre pyrolysis oil–A literature review. Journal of Cleaner Production, 2021. 279: p. 123336.
    25. Jiang, S., et al., The investigations of hematite-CuO oxygen carrier in chemical looping combustion. Chemical Engineering Journal, 2017. 317: p. 132-142.
    26. Aysu, T. and M.M. Küçük, Biomass pyrolysis in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and characterization of products. Energy, 2014. 64: p. 1002-1025.
    27. Basu, P. and S.A. Fraser, Circulating fluidized bed boilers. 1991: Springer.
    28. Tran, Q.K., et al., Fast pyrolysis of pitch pine biomass in a bubbling fluidized-bed reactor for bio-oil production. Journal of Industrial and Engineering Chemistry, 2021. 98: p. 168-179.
    29. Dai, X., et al., Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy, 2001. 26(4): p. 385-399.
    30. Bridgwater, A. and G. Peacocke, Fast pyrolysis processes for biomass. Renewable and sustainable energy reviews, 2000. 4(1): p. 1-73.
    31. Salema, A.A. and F.N. Ani, Microwave induced pyrolysis of oil palm biomass. Bioresource technology, 2011. 102(3): p. 3388-3395.
    32. Zhao, X., et al., A microwave reactor for characterization of pyrolyzed biomass. Bioresource Technology, 2012. 104: p. 673-678.
    33. Yan, B., et al., Experimental study on coal pyrolysis to acetylene in thermal plasma reactors. Chemical engineering journal, 2012. 207: p. 109-116.
    34. Nema, S. and K. Ganeshprasad, Plasma pyrolysis of medical waste. Current science, 2002: p. 271-278.
    35. Choi, S., et al., A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chemical Engineering Journal, 2012. 185: p. 193-200.
    36. Pakdel, H., D.M. Pantea, and C. Roy, Production of dl-limonene by vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 2001. 57(1): p. 91-107.
    37. Campuzano, F., R.C. Brown, and J.D. Martínez, Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 2019. 102: p. 372-409.
    38. Yazdani, E., S.H. Hashemabadi, and A. Taghizadeh, Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management, 2019. 85: p. 195-201.
    39. Li, S.-Q., et al., Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & engineering chemistry research, 2004. 43(17): p. 5133-5145.
    40. Cai, W., et al., Long term storage stability of bio-oil from rice husk fast pyrolysis. Energy, 2019. 186: p. 115882.
    41. 陳維新、江金龍, "空氣汙染與控制,". 2008. https://www.taaze.tw/rwd_searchResult.html?keyType%5B%5D=2&keyword%5B%5D=%E9%99%B3%E7%B6%AD%E6%96%B0
    42. Liu, X., et al., Study on the key structure parameters of a gravity settling chamber based on a flow field simulation. Engineering Applications of Computational Fluid Mechanics, 2019. 13(1): p. 377-395.
    43. Systems., G.C.E., "Wet Scrubber.".
    44. Rodrigues, M., et al., Analysis of the efficiency of a cloth cyclone: the effect of the permeability of the filtering medium. Brazilian journal of chemical engineering, 2003. 20: p. 435-443.
    45. Tanabe, E.H., et al., Experimental investigation of deposition and removal of particles during gas filtration with various fabric filters. Separation and Purification Technology, 2011. 80(2): p. 187-195.
    46. Hutson, N.D., R. Krzyzynska, and R.K. Srivastava, Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber. Industrial & engineering chemistry research, 2008. 47(16): p. 5825-5831.
    47. Revuelta, M.B., Mineral resources: from exploration to sustainability assessment. 2017: Springer.
    48. Lv, W., et al., Investigation on activated carbon removing ultrafine particles and its harmful components in complex industrial waste gas. Journal of Cleaner Production, 2018. 201: p. 382-390.
    49. 杭州阿諾瓦機電設備有限公司, "活性碳吸附塔工作原理.". http://www.anovoo.com/Products/hxtxftgzyl.html
    50. 台灣電力公司, 工業用電費用. https://www.taipower.com.tw/tc/page.aspx?mid=5575&cid=3061&cchk=ccc7352b-4cd1-4102-8403-8c83ba944ab1

    無法下載圖示 全文公開日期 2033/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE