簡易檢索 / 詳目顯示

研究生: 許雅涵
Ya-han Hsu
論文名稱: 兩階段式電沉積法製備氧化鋅奈米桿之研究
Preparation and Characterization of Zinc Oxide Nanorods by Two-Step Electrodeposition Technique
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 何國川
Kuo-Chuan Ho
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 121
中文關鍵詞: 氧化鋅電化學沉積
外文關鍵詞: Zinc oxide, Electrodeposition
相關次數: 點閱:340下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以兩階段式電沉積法在ITO玻璃上成長氧化鋅奈米桿,期望能生成細長且缺陷較少的氧化鋅奈米桿,將來可應用於太陽能電池和生物感測元件上。
    第一部分探討直接電沉積氧化鋅奈米桿的性質。直接電沉積氧化鋅奈米桿時,無法得到均勻分布且整齊排列的奈米桿。因此期望藉由兩階段式電沉積法加上一層種晶來幫助奈米桿的生長與排列。
    第二部分探討兩階段式電沉積氧化鋅奈米桿的性質,包含第一階段成長種晶的電位與時間,和第二階段成長氧化鋅奈米桿的電位、硝酸鋅濃度、系統溫度與時間之影響。當第一階段成長種晶的電位為-1.3V且沉積時間超過5秒時,可以得到整齊且均勻排列的奈米桿。而第二階段成長奈米桿的較佳條件為電位-1.0V到-0.9V、硝酸鋅濃度0.002M到0.003M以及系統溫度高於60OC,可以得到排列整齊、結晶性佳且高穿透率的奈米桿,但是電沉積時間必須小於120分鐘。然而隨著還原電位的提升、硝酸鋅濃度的增加和系統溫度的下降,氧化鋅奈米桿的缺陷也跟著增加。
    第三部分探討熱處理溫度對氧化鋅奈米桿的影響。退火處理使得奈米桿中的缺陷減少且晶相品質提升。


    ZnO nanorods were grow on ITO substrates by two-step electrochemical deposition in Zn(NO3)2 aqueous solution. We expect to grow thin, long, less defect and high crystallization ZnO nanorods, and the nanorods can use in solar cell and biosensor in the future.
    In first part, we investigate the direct electrodeposition. Uniform and highiy oriented ZnO nanorods were not deposited by direct electrodeposition.
    In second part, we investigate the two-step electrodeposition. Compact and transparent ZnO nanorods were deposited by the two-step electrodeposition technique. The first potentiostatic step was used to prepare the seed layer, and the second potentiostatic step was used to grow ZnO nanorods. The effects of growth parameters, such as first cathodic potential, first growth time, second cathodic potential, Zn(NO3)2 concentration, bath temperature, and second growth time were studied. Results show that ZnO nanorods with highly c-axis preferred orientation can been obtained when the operation time of first potentiostatic deposition at –1.3 V is over 5 s. The isolated nanorods fabricated at potential -0.9V or -1.0V, a relatively small concentration of Zn(NO3)2 (0.002M~0.003M), and high temperature (>60OC) exhibited the best structural and optical qualities. The ZnO nanorods were found to grow along the c axis perpendicularly to the substrate with a single-crystal wurtzite structure.
    In third part, we investigate the annealing treatment of ZnO nanorods. Thermal treatment will effect the optical emission characteristic of ZnO rods. The degree of crystallization of ZnO rod will be increased with thermall treatment due to it reduce the concentration of defect.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1奈米材料 1 1.2氧化鋅奈米材料的應用 1 1.3研究動機 3 第二章 理論基礎與文獻回顧 4 2.1 材料簡介 4 2.1.1半導體(Semiconductor)介紹 4 2.1.2氧化鋅(Zinc Oxide)簡介 5 2.2氧化鋅晶體結構 5 2.2.1晶相簡介 5 2.2.2氧化鋅晶體結構 8 2.3氧化鋅特性 11 2.3.1氧化鋅之機械性質 11 2.3.2氧化鋅之導電性 13 2.3.3氧化鋅缺陷 15 2.3.4氧化鋅光學性質 18 2.4氧化鋅奈米桿成長方法 20 2.4.1氧化鋅奈米桿各種成長方法簡介 20 2.4.2以電化學沉積法成長氧化鋅奈米桿 23 第三章 實驗方法與步驟 28 3.1實驗藥品 28 3.2儀器設備 28 3.3實驗程序 30 3.4 ITO玻璃基板之清洗程序 31 3.5氧化鋅奈米桿之製備 32 3.6 氧化鋅奈米桿之熱處理 33 3.7結構分析與性質量測儀器 34 3.8數值分析法 37 第四章 結果與討論 38 4.1電沉積系統之電化學特性研究 39 4.2直接電沉積法成長氧化鋅奈米桿 42 4.3兩階段式電沉積法成長氧化鋅奈米桿 48 4.3.1第一階段電沉積種晶對氧化鋅奈米桿之影響 49 4.3.1.1第一階段電位對氧化鋅奈米桿之影響 49 4.3.1.2第一階段電鍍時間對氧化鋅奈米桿之影響 56 4.3.2第二階段電沉積成長氧化鋅奈米桿 63 4.3.2.1第二階段電位對氧化鋅奈米桿之影響 63 4.3.2.2鍍液濃度對氧化鋅奈米桿之影響 80 4.3.2.3電沉積溫度對氧化鋅奈米桿之影響 92 4.3.2.4第二階段電沉積時間對氧化鋅奈米桿之影響 103 4.4熱處理對氧化鋅奈米桿之影響 106 4.4.1熱處理後氧化鋅奈米桿之放光特性 106 4.4.2熱處理後氧化鋅奈米桿之表面組成分析 109 第五章 結論 113 第六章 參考文獻 114

    1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phy. 93, 793-818 (2003).
    2. J. C. Charlier, X. Blase, and S. Roche, Rev. Mod.Phys.79, 677-732 (2007).
    3. M. A. Meyers, A. Mishra, D. J. Benson, and Pro.Mater. Sci.51, 427-556, (2006).
    4. D. Vanmackelbergh, and P. Liljeroth, Chem. Soc. Rev. 34, 299-312 (2005).
    5. A. J. Shields, Nature Photonics 1, 215-223 (2007).
    6. J. Bath, and A. J. Turberfield, Nat. Nanotechnol. 2, 275-284 (2007).
    7. L. J. Guo, Adv. Mater. 19, 495-513 (2007).
    8. J. M. Klostranec, and W. C. W. Chan, Adv. Mater. 18, 1953-1964 (2006).
    9. J. J. Wu, and S. C. Liu, J. Phys. Chem. 106, 9546 (2002).
    10. P. Yang, and C. M. Lieber, Science 273, 1836 (1996).
    11. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, J. Mater. Chem. 9, 3173 (1999).
    12. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999).
    13. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
    14. E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, J. Am. Chem. Soc. 126, 7790-7791 (2004).
    15. B. O’Regan, and M. Grätzel, Nature 353, 737-740 (1991).
    16. S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang, and Z. Du, J. Phys. Chem. C 111, 18417-18422 (2007).
    17. T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Cao, Adv. Mater. 19, 2588-2592 (2007).
    18. S. Kandasamy, W. Wlodarski, A. Holland, S. Nakagomi, and Y. Kokubun, Appl. Phys. Lett. 90, 064103 (2007).
    19. G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, Sens. Actuators B 124, 187-191 (2007).
    20. H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Sens. Actuators B 115, 247-251 (2006).
    21. P. Bhattacharyya, P. K. Basu, C. Lang, H. Saha, and S. Basu, Sens. Actuators B 129, 551-557 (2008).
    22. G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, J. Appl. Phys. 102, 083103 (2007).
    23. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, J. Phys. Chem. C 111, 1900-1903 (2007).
    24. Z. Fan, and J. G. Lu, Appl. Phys. Lett. 86, 123510 (2005).
    25. Y. Qiu, and S. Yang, Adv. Funct. Mater. 17, 1345-1352 (2007).
    26. P. D. Batista, and M. Mulato, Appl. Phys. Lett. 87, 143508 (2005).
    27. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, Sens. Actuators, B 138, 344-350 (2009).
    28. J. Zhou, N. Xu, and Z. L. Wang, Adv. Mater. 18, 2432-2435 (2006).
    29. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, Appl. Phys. Lett. 89, 123902 (2006).
    30. C. Jagadish, and S. Pearton, Thin Films and Nanostructure, Elsevier (2006).
    31. L. Schmidt-Mende, and J. L. MacManus-Driscoll, Mater. Today 10, 40 (2007).
    32. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, and M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006).
    33. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
    34. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, Nano Lett. 3, 235 (2003).
    35. G. W. She , X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee, and C. H. Liu, Appl. Phys. Lett. 92, 053111 (2008).
    36. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會 修訂版(1994).
    37. L. Zhang, and H. Huang, Appl. Phys. Lett. 90, 023115 (2007).
    38. Y. Sun, D. J. Riley, and M. N. R. Ashfold, J. Phys. Chem. B 110, 15186-15192 (2006).
    39. O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
    40. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
    41. N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, Mater. Sci. Semicond. Process. 2, 247 (1999).
    42. D. Xu, J. Zhang, Q. Liao, Y. Guo, and L. Xu, J. Phys. Chem. B 109,13519-13522 (2005).
    43. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth 203, 186-196 (1999).
    44. Y. M. Chiang, D. BirnieⅢ, and W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc. (1997).
    45. S. J. Chang, Y. K. Su, and Y. P. Shei, J. Vac. Sci.Technol. A 13, 381 (1995).
    46. Y. Kashiwaba, K. Haga, H. Watanabe, B. P. Zhang, Y. Segawa, and K. Wakatsuki, Phys. Status Solid B 229, 921 (2002).
    47. Roy. G. Gordon, MRS Bulletin 25, 52 (2000).
    48. S. M. Rozati, and Sh. Akesteh, Mater. Charact. 58, 319-322 (2007).
    49. J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, J. Electrochem. Soc. 154, H521-H524 (2007).
    50. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, J. Appl. Phys. 101, 083705 (2007).
    51. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, J. Phys. Chem. C 111, 1900 (2007).
    52. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Eur. Ceram. Soc. 22, 49-59 (2002).
    53. A. Umar, B. Karunagaran, E-K. Suh, and Y. B. Hahn, Nanotechnology 17, 4072 (2006).
    54. H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, E. A. Fitzgerald, and C. V. Thompson, Appl. Phys. Lett. 87, 101908 (2005).
    55. X. Liu, X. Hu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
    56. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, A. Appl. Phys. Lett. 68, 403 (1996).
    57. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
    58. Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, Appl. Phys. Lett. 87, 211912 (2005).
    59. D. Li, Y. H. Leug, A. B. Djuriši , Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
    60. M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, J. Appl. Phys. 42, 481 (2003).
    61. W. M. Kwok, Y. H. Leung, A. B. Djuriši , W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 87, 093108 (2005).
    62. R. M. B. Cross, M. M. De Souza, and E. M. S. Narayanan, Nanotechnology 16, 2188-2192 (2005).
    63. C. Chandrinou, N. Boukos, C. Stogios, and A. Travlos, Microelectron. J. 40, 296-298 (2009).
    64. C. C. Lin, H. C. Liao, and S. Y. Chen, J. Vac. Sci. Technol. B 24, 304-307 (2006).
    65. X. Meng, B. Lin, B. Gu, J. Zhu, and Z. Fu, Solid State Commun. 135, 411 (2005).
    66. T. Okada, B. H. Agung, and Y. Nakata, Appl. Phys. A 79, 1417 (2004).
    67. G. R. Li, C. R. Dawa, Q. Bu, F. L. Zhen, X. H. Lu, Z. H. Ke, H. E. Hong, C. Z. Yao, P. Liu, and Y. X. Tong, Electrochem. Commun. 9, 863-868 (2007).
    68. M. Guo, P. Diao, and S. Cai, Appl. Surf. Sci. 249, 71 (2005).
    69. J. Song, and S. Lim, J. Phys. Chem. C 111, 596 (2007).
    70. L. Zhang, Z. Chen, Y. Tang, and Z. Jia, Thin Solid Films 429, 24-29 (2005)
    71. S. Otani, J. Katayama, H. Umemoto, and M. Matsuoka, J. Electrochem. Soc. 153, C551-C556 (2006).
    72. M. Izaki, and T. Omi, Appl. Phys. Lett. 68, 2439-2440 (1996).
    73. S. Peulon, and D. Lincot, Adv. Mater. 8, 166-170 (1996).
    74. G. W. She , X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee, and C. H. Liu, Appl. Phys. Lett. 92, 053111 (2008).
    75. F. Xu, Y. Lu, L. Xia, Y. Xie, M. Dai, and Y. Liu, Mater. Res. Bull.44, 1700-1708 (2009).
    76. Q. Wang, G. Wang, J. Jie, X. Han, B. Xu, and J.G. Hou, Thin Solid Films 429, 61-65 (2005).
    77. M. K. Lee, and H. F. Tu, Cryst. Growth Des. 8, 1785-1788 (2008).
    78. D. Pradhan, and K. T. Leung, Langmuir 24, 9707-9716 (2008).
    79. H. El Belghiti, T. Pauporté, and D. Lincot, phys. stat. sol. A 205, 2360–2364 (2008).
    80. M. Guo, C. Y. Yang, M. Zhang, Y. J. Zhang, T. Ma, X. D. Wang, and X. D. Wang, Electrochim. Acta 53, 4633-4641 (2008).
    81. Y. Lu , F. Xu, Y. Xie, and Y. Liu, Mater. Des. 30,1704-1711 (2009).
    82. F. Xu, Y. Lu, Y. Xie, and Y. Liu, J. Solid State Electrochem. 14, 63-70 (2010).
    83. Z. H. Gu ,and T. Z. Fahidy, J. Electrochem. Soc. 146, 156-159 (1999).
    84. G. Machado, D. N. Guerra, D. Leinen, J. R. Ramos-Barrado, R.E. Marotti, and E. A. Dalchiele, Thin Solid Films 490, 124-131 (2005).
    85. M. Izaki, S. Watase, and H. Takahashi, Adv. Mater. 15, 2000-2002 (2003).
    86. J. Yang, G. Liu, J. Lu, Y. Qiu, and Sh. Yang, Appl. Phys. Lett. 90, 103109 (2007).
    87. S. J. Lee, S. K. Park, C. R. Park, J. Y. Lee, J. Park, and Y. R. Do, J. Phys. Chem. C 111, 11793-11801 (2007).
    88. E. Gur, H. Asıl, C. Coskun, S. Tuzemen, K. Meral,Y. Onganer, K. Serifoglu, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2021-2026 (2008).
    89. K. T. Leung, and D. Pradhan, J. Phys. Chem. C 112,1357-1364 (2008).
    90. B. H. Juárez, C. López, and C. Alonso, J. Phys. Chem. B 108, 16708-16712 (2004).
    91. Th. Pauporté, and D. Lincot, Appl. Phys. Lett.75, 3817-3819, (1999).
    92. M. Izaki, and T. Omi, J. Electrochem. Soc.143, L53-L55 (1996).
    93. G. F. Hutting, and H. Moldner, Z. Anorg. Allg. Chem. 211, 368-378 (1933)
    94. S. Peulon, and D. Lincot, J. Electrochem. Soc. 145, 864 (1998).
    95. M. Izaki, J. Electrochem. Soc. 146, 4517-4521 (1999)
    96. S. Wei, J. Lian, X. Chen, and Q. Jiang, Appl. Surf. Sci. 254, 6605-6610 (2008).
    97. X. D. Gao, F. Peng, X. M. Li, W. D. Yu, and J. J. Qiu, J. Mater. Sci. 42, 9638-9944 (2007).
    98. M. Guo, P. Diao, and S. Cai, Appl. Surf. Sci. 249, 71-75 (2005).
    99. Goux A, Pauporté T, Chivot J, and Lincot D, Electrochim Acta 50, 2239 (2005).
    100. B. Canava, and D. Lincot, J. Appl. Electrochem. 30, 711 (2000).
    101. T. Yoshida, D. Komatsu, N. Shimokawa, and H. Minoura, Thin Solid Films 166, 451-452 (2004).
    102. T. Mahalingam, V.S. John, M Raja, and Y.K. Su, Sol Energy Mater Sol Cells 88, 227 (2005).
    103. M. Fahoume, O. Maghfoul, M. Aggour, B. Hartiti, F. Chraïbi, and A. Ennaoui, Sol Energy Mater Sol Cells 90, 1437 (2006).
    104. R. Romero, D. Leinen, E. A. Dalchiele. J. R. Ramos-Barrado, and F. Martin, Thin Solid Film 515, 1942 (2006).
    105. J. Markmann, A. Tschpe, and R. Birringer, Acta Mater. 50, 1433 (2002).
    106. D. Wang, X. Meng, Z. Chen, and Q. Fu, Physical E 40, 852 (2008).
    107. Y. Wang, X. Li, G. Lu, X. Quan, and G. Chen, J. Phys. Chem. C 112, 7332 (2008).
    108. J. Qiu, X. Li, W. Yu, X. Gao, W. He, S. Park, Y. Hwang, and H. Kim, Nanotechnology 17, 4695 (2006).
    109. N. S.Norberg, and D. R.Gamelin, J. Phys. Chem. B 109, 20810 (2005).
    110. R. Xie, T. Sekiguchi, T. Ishigaki, N. Ohashi, D. Li, D. Yang, B. Liu, and Y. Bando, Appl. Phys. Lett. 88, 134103(2006).
    111. C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, J. Am. Chem. Soc. 127, 1463 (2005).
    112. W. M. Kwok, A. B. Djurisic, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan, Appl. Phys. Lett. 89, 183112 (2006).
    113. J. Qiu, X. Lin, W. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, and Y. D. Kim, Nanotechnology 20, 155603 (2009).
    114. D. T. Harvey, and R. W. Linton, Colloid and Surfaces 11, 81-96 (1984).
    115. G. Ballerini, K. Ogle, and M. G. Barthes-Labrousse, Applied Surface Science 253, 6860-6867 (2007).
    116. L. Zhang, Z. Chen, Y. Tang, and Z. Jia, Thin Solid Film 492, 24-29 (2005).
    117. S. Lee, Y. Jeong, S. Jeong, J. Lee, M. Jeon, and J. Moon, Superlattices and Microstructure 44, 761-769 (2008).
    118. X. Zhang, W. G. Sloof, A. Hovestad, E. P. M. van Westing, H. Terryn, and J. H. W. de Wit, Surface & Coating Technology 197, 168-176 (2005).
    119. D. Wang, C. Song, Z. Hu, W. Chen, and X. Fu, Materials Letters 61, 205 (2007).
    120. T. Yamamoto, T. Shiosaki, and A. Kawabata, J. Appl. Phys. 51, 3113 (1980).
    121. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Chem. Mater. 17, 1001 (2005).
    122. W. Shen, Y. Duan, J. Wang, Q. Wang, and Y. Zeng, Materials and Nanotechnologies 6029, 60290G-1 (2005).
    123. R. B. M. Cross, M. M. De Souza, and E. M. Sankara Narayanan, Nanotechnology 16, 2188-2192 (2005).

    無法下載圖示 全文公開日期 2015/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE