簡易檢索 / 詳目顯示

研究生: 黃淼
Miao Huang
論文名稱: 行動提示設計對情境意識之影響
The Effects of Mobile Notification Designs on Situation Awareness
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 吳志富
Chih-Fu Wu
許言
Yen Hsu
范振能
Jeng-Neng Fan
柯志祥
Chih-Hsiang Ko
陳建雄
Chien-Hsiung Chen
學位類別: 博士
Doctor
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 116
中文關鍵詞: 情境意識手機提示聽覺線索觸覺線索視覺線索嗅覺線索
外文關鍵詞: Situation awareness, Notification cue, Sound cue, Tactile cue, Visual cue, Olfactory cue
相關次數: 點閱:210下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

訊息技術的發展使得手機在日常生活中扮演重要角色,人們不僅僅使用手機用以聯絡通訊,其中相關應用程式更可提供給使用者更多便利:如處理公務、查詢地圖、接受新聞資訊等,隨之而來使得提示變得更加頻繁,不合時宜的提示方式不僅無法提供給使用者愉快的互動體驗,更可能造成干擾與壓力,影響情緒。另一方面,使用者在感知提示並作出反應的行為過程在心理學中稱為情境意識(Situation awareness)。本研究探討了不同手機提示對使用者情境意識之影響,目的是通過對手機提示的設計增加使用者之互動體驗,減少心理負荷,提高資訊回應率。研究包括三個實驗,以立意抽樣、便利抽樣之方式邀請60~72位受測者,每項實驗設計3~5個操作任務,不同的提示互動發生在任務操作中。實驗數據的採集包括任務操作時間、系統可用性尺度量表(SUS)、使用者主觀偏好量表等。半結構式訪談內容包括對提示介面記憶、資訊內容回憶與情緒感受等。實驗之三個議題如下:
議題一由探討視覺、聽覺和触覺提示線索不同搭配對使用者感知、資訊處理之影響。實驗採用2(視覺動態)*3(提示維度)雙因子混合設計,提示分動態與靜態提示兩種,三級不同提示維度,分別為視覺(V)、視覺 + 聲音(VS)和視覺 + 振動。議題二探討了分別在低和高環境音中使用不同提示模式對使用者的影響。實驗採用2(環境音)x 3(提示模式)雙因子組間設計。提示模式分晃動視覺(SV)、晃動視覺+振動(SVV)與振動(V)三個層級。高環境音定義為80至90分貝間,低環境音為小於30分貝。議題三探討氣味提示線索對於手機提示互動影響。實驗採用2(視覺佈局)*3(嗅覺提示)雙因子組間組設計。實驗設計開發一個購物App模型,商品視覺之排列分為矩陣與列表兩個層級.採用外部裝置發出特定香味模擬不同嗅覺線索。嗅覺線索分為三個層級:有氣味提示且與推薦商品匹配(MOC)和有但與推薦商品不匹配(MMOC),及無氣味三種(NOC)。
綜合三項議題研究結果發現:(1)提示線索之增加可以提升提示之可感知性,比起單一維度,受測者會更快對兩個維度之線索作出反應。單一維度中,動態視覺比靜態更具可感知性。環境音也會影響提示線索感知性,低環境音中提示更易被使用者感知。(2)振動+視覺是手機提示中互動性最好的提示方式,此外嗅覺提示也可以增加提示互動體驗。(3)情境意識受不同提示模式的影響。情境意識第一級感知中,與提示之維度不同有關,多維度的提示線索可以增強對使用者的感知性。情境意識第二級別理解中,提示的視覺呈現會影響使用者對資訊的理解。尤其在單一視覺提示維度中,動態視覺呈現類型比靜態更易於認知和記憶。當提示維度增加,視覺與聽覺或觸覺線索結合時,靜態視覺類型會更好。情境意識級別三之預測,與受測者對提示之回應率以及操作時間有關。提示維度的不同會影響使用者對提示做出回應決策的速度,聽覺提示線索使受測者更快地做出反應,玫瑰氣味嗅覺線索能引導使用者作出回應。


The development of information technology has made mobile phones play an important role in our daily life. People not only use mobile phones for communication, but related phone applications can provide users with more convenience, such as handling official duties, querying maps, receiving news, etc. As a result, mobile notifications have been used more frequently. Inappropriate notification methods may lead to poor interaction experience, and may also cause interference, stress, and affect users' emotions. In addition, the behavior in which users perceive notifications and respond to them is called situation awareness in psychology. This study explored the impact of different mobile phone notifications on users’ situational awareness. The purpose is to increase the user's interactive experience by designing mobile phone notification modalities in an appropriate environment, reducing the users' psychological load, and increasing the information response rate. The experiments of this research study invited 60 to 72 participants by purposive sampling or convenience sampling methods. Each experiment is designed with 3 to 5 operational tasks, and different notification designs occur during task operations. The collection of experimental data includes task completion time, system usability scale (SUS), user subjective preference scale, etc. Semi-structured interview content includes notification interface memory, information content recall and emotional feelings, etc. The research is divided into three experiments.
The first experiment is to explore the impact of different combinations of visual, auditory, and tactile cues on users’ perception and information processing. The experiment adopts a two-factor mixed design of 2 (visual presentation) *3 (notification dimension). The visual presentation is divided into dynamic and static. There are three different notification dimensions, i.e., vision (V), vision + sound (VS), and vision + vibration. The second experiment discussed the effects of different notification modalities in low and high ambient sounds on users. The experiment adopts a 2 (ambient sound) x 3 (notification modality) two-factor between-group design. The notification modality is divided into three levels: shaking vision (SV), shaking vision + vibration (SVV), and vibration (V). High ambient sound is defined as between 80 and 90 decibels. The low ambient sound is less than 30 decibels. The third experiment adopted olfactory cues as mobile phone notifications to explore how they affect users’ situation awareness and interactive experience. The experiment used a 2 (visual layout) * 3 (olfactory cue) two-factor between-group design. The experimental design is a shopping app prototype. The olfactory cues are divided into three levels: odors that match the recommended products (MOC), odors that do not match the recommended products (MMOC), and the odorless (NOC). The external devices are used to emit specific fragrances to simulate different olfactory cues.
Based on the research results of the three issues, it is found that: (1) The increase of cues can improve the perceptibility of notifications. Compared with a single dimension, participants respond faster to cues in two dimensions. Ambient sounds also affect the perception faster on notification cues, and the notifications in low ambient sounds are more easily perceivable by users. (2) Vibration + Vision is the best interactive method among mobile notifications. In addition, olfactory cues can also increase the interactive experience. (3) Situational awareness is affected by different notification designs. The first level of the perception of situational awareness is related to the different dimensions of notifications. Multi-dimensional notification can enhance the user's perception. In the second level of situation awareness regarding understanding, the visual presentation of the notification can affect the user's understanding of the information. Especially in a single visual cue dimension, dynamic visual presentation types are easier to recognize and remember than static ones. When the cue dimension increases and the visual and auditory or tactile cues are combined, the static vision type will be better than dynamic. The third level of situation awareness is related to the participants' response rate to the notification and the operation time. The auditory cues enable the participant to react more quickly, and the olfactory cues of the rose smell can guide the user to respond.

目 錄 中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XI 1. 第壹章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍與限制 3 1.3.1 研究範圍 3 1.3.2 研究限制 4 1.4 研究思路 4 1.5 研究流程與架構 5 2. 第貳章 文獻探討 7 2.1 情境意識(SITUATION AWARENESS)理論 7 2.1.1 情境意識定義 7 2.1.2 情境意識之互動觀點 11 2.1.3 情境意識測量方法 14 2.2 提示線索(NOTIFICATION CUES) 16 2.2.1 聽覺提示線索 17 2.2.2 觸覺提示線索 18 2.2.3 視覺提示線索 19 2.2.4 嗅覺提示線索 19 2.3 手機提示互動 22 2.3.1 提示互動模式 22 2.3.2 提示資訊類別 25 2.3.3 提示介面型式 26 2.4 情境意識心智模式 29 2.5 情境意識理論應用於提示介面之評價 30 3. 第參章 研究議題一:視覺呈現與提示維度影響探討 32 3.1 前言 32 3.2 實驗設計 32 3.2.1 實驗變數 32 3.2.2 實驗對象 33 3.3 實驗樣本與流程 33 3.3.1 實驗樣本 33 3.3.2 實驗流程 34 3.4 實驗結果 35 3.4.1 任務績效 35 3.4.2 主觀感受 37 3.5 研究一討論 42 3.6 本章小結 44 4. 第肆章 研究議題二:環境音與提示模式影響探討 45 4.1 前言 45 4.2 實驗設計 46 4.2.1 實驗變數 46 4.2.2 實驗對象 47 4.3 實驗樣本與流程 47 4.3.1 實驗樣本 47 4.3.2 實驗流程 48 4.4 實驗結果 48 4.4.1 任務時間 48 4.4.2 任務錯誤率 52 4.4.3 任務錯誤率與操作時間相關性分析 53 4.4.4 系統可用性尺度量表(SUS)結果 54 4.4.5 主觀情緒 55 4.5 研究二討論 58 4.6 本章小結 60 5. 第伍章 研究議題三:氣味提示線索與視覺佈局影響探討 61 5.1 前言 61 5.2 實驗設計 61 5.2.1 實驗變數 62 5.2.2 實驗對象 62 5.3 實驗樣本與流程 63 5.3.1 實驗樣本 63 5.3.2 實驗流程 64 5.4 實驗結果 65 5.4.1 任務時間 65 5.4.2 系統可用性尺度量表(SUS) 68 5.4.3 主觀情緒 68 5.4.4 提示回應率 72 5.5 研究三討論 74 5.6 本章小節 76 6. 第陸章 結論與建議 78 6.1 研究結論 78 6.1.1 提示之感知性 78 6.1.2 提示之互動性 79 6.1.3 提示對情境意識影響 80 6.2 設計建議 81 參考文獻 83 附錄一 97 附錄二 99

1. Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., & Pinkerton, M. (1997). Cyberguide: A mobile context‐aware tour guide. Wireless networks, 3(5), 421-433.
2. Adams, M. J., Tenney, Y. J., & Pew, R. W. (1995). Situation awareness and the cognitive management of complex systems. Human factors, 37(1), 85-104
3. Alaoui-Ismaïli, O., Robin, O., Rada, H., Dittmar, A., & Vernet-Maury, E. (1997). Basic emotions evoked by odorants: comparison between autonomic responses and self-evaluation. Physiology & behavior, 62(4), 713-720.
4. Amores, J., & Maes, P. (2017, May). Essence: Olfactory interfaces for unconscious influence of mood and cognitive performance. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 28-34).
5. Baek, Y., Myung, R., & Yim, J. (2006). Have you ever missed a call while moving? the optimal vibration frequency for perception in mobile environments. WSEAS Transactions on Communications, 5(10), 1981-1985.
6. Bardram, J. E. (2009). Activity-based computing for medical work in hospitals. ACM Transactions on Computer-Human Interaction (TOCHI), 16(2), 10.
7. Bartram, L., Ware, C., & Calvert, T. (2001). Moving Icons: Detection and Distraction. Paper presented at the INTERACT.
8. Bedny, G., & Meister, D. (1999). Theory of activity and situation awareness. International Journal of cognitive ergonomics, 3(1), 63-72.
9. Billings, C. E. (1995, November). Situation awareness measurement and analysis: A commentary. In Proceedings of the International Conference on Experimental Analysis and Measurement of Situation Awareness (Vol. 1). Daytona Beach, FL: Embry-Riddle Aeronautical University Press.
10. Bodnar, A., Corbett, R., & Nekrasovski, D. (2004, October). AROMA: Ambient awareness through olfaction in a messaging application. In Proceedings of the 6th international conference on Multimodal interfaces (pp. 183-190).
11. Brewster, S., Chohan, F., & Brown, L. (2007, April). Tactile feedback for mobile interactions. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 159-162).
12. Brewster, S., & King, A. (2005, September). An investigation into the use of tactons to present progress information. In IFIP Conference on Human-Computer Interaction (pp. 6-17). Springer, Berlin, Heidelberg.
13. Broens, T., Van Halteren, A., Van Sinderen, M., & Wac, K. (2007). Towards an application framework for context-aware m-health applications. International Journal of Internet Protocol Technology, 2(2), 109-116.
14. Campbell, C. S., & Maglio, P. P. (1999). Facilitating navigation in information spaces: Road-signs on the World Wide Web. International Journal of Human-Computer Studies, 50(4), 309-327.
15. Castiello, U., Zucco, G. M., Parma, V., Ansuini, C., & Tirindelli, R. J. C. s. (2006). Cross-modal interactions between olfaction and vision when grasping. 31(7), 665-671.
16. Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research. Retrieved from
17. Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014). About face: the essentials of interaction design: John Wiley & Sons.
18. Czerwinski, M., Cutrell, E., & Horvitz, E. (2000, December). Instant messaging and interruption: Influence of task type on performance. In OZCHI 2000 conference proceedings (Vol. 356, pp. 361-367).
19. Dalrymple, M., & Schiflett, S. (1997). Measuring situational awareness of AWACS weapons directors. Paper presented at the Situational awareness in the tactical air environment (SOAR 97-01). Proceedings of the Naval Air Warfare Center’s First Annual Symposium at Patuxent River, MD. WPAFB, OH: CSERIAC.
20. Davis, S. B., Davies, G., Haddad, R., & Lai, M. K. (2007). Smell me: Engaging with an interactive olfactory game. In People and Computers XX—Engage (pp. 25-40). Springer, London.
21. de Paiva Guimarães, M., Dias, D. R. C., Mota, J. H., Gnecco, B. B., Durelli, V. H. S., & Trevelin, L. C. (2018). Immersive and interactive virtual reality applications based on 3D web browsers. Multimedia Tools and Applications, 77(1), 347-361.
22. de Vries, R. A. J., Lohse, M., Winterboer, A., Groen, F. C., & Evers, V. (2013). Combining social strategies and workload: a new design to reduce the negative effects of task interruptions. In CHI'13 Extended Abstracts on Human Factors in Computing Systems (pp. 175-180).
23. del Carmen Rodríguez-Hernández, M., & Ilarri, S. (2016). Pull-based recommendations in mobile environments. Computer Standards & Interfaces, 44, 185-204.
24. Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing, 5(1), 4-7.
25. Dinh, H. Q., Walker, N., Hodges, L. F., Song, C., & Kobayashi, A. (1999, March). Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In Proceedings IEEE Virtual Reality (Cat. No. 99CB36316) (pp. 222-228). IEEE.
26. Dmitrenko, D., Maggioni, E., & Obrist, M. (2018, October). I smell trouble: using multiple scents to convey driving-relevant information. In Proceedings of the 20th ACM International Conference on Multimodal Interaction (pp. 234-238).
27. Dobbelstein, D., Herrdum, S., & Rukzio, E. (2017, September). inScent: A wearable olfactory display as an amplification for mobile notifications. In Proceedings of the 2017 ACM International Symposium on Wearable Computers (pp. 130-137).
28. Dumais, S., Cutrell, E., & Chen, H. (2001, March). Optimizing search by showing results in context. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 277-284).
29. Durso, F. T., Truitt, T. R., Hackworth, C. A., Crutchfield, J. M., & Manning, C. A. (1998). En route operational errors and situational awareness. The International Journal of Aviation Psychology, 8(2), 177-194.
30. Endsley, M. R. (1988, May). Situation awareness global assessment technique (SAGAT). In Proceedings of the IEEE 1988 national aerospace and electronics conference (pp. 789-795). IEEE.
31. Endsley, M. R. (1995). Measurement of situation awareness in dynamic systems. Human factors, 37(1), 65-84.
32. Endsley, M. R. (2015). Situation awareness misconceptions and misunderstandings. Journal of Cognitive Engineering and Decision Making, 9(1), 4-32.
33. Endsley, M. R., Farley, T. C., Jones, W. M., Midkiff, A. H., & Hansman, R. J. (1998). Situation awareness information requirements for commercial airline pilots. International Center for Air Transportation.
34. Felt, A. P., Egelman, S., & Wagner, D. (2012, October). I've got 99 problems, but vibration ain't one: a survey of smartphone users' concerns. In Proceedings of the second ACM workshop on Security and privacy in smartphones and mobile devices (pp. 33-44).
35. Fischer, G. (2012, May). Context-aware systems: the'right'information, at the'right'time, in the'right'place, in the'right'way, to the'right'person. In Proceedings of the international working conference on advanced visual interfaces (pp. 287-294).
36. Fischer, J. E., Yee, N., Bellotti, V., Good, N., Benford, S., & Greenhalgh, C. (2010, September). Effects of content and time of delivery on receptivity to mobile interruptions. In Proceedings of the 12th international conference on Human computer interaction with mobile devices and services (pp. 103-112).
37. Fogg, B. J. (2009, April). A behavior model for persuasive design. In Proceedings of the 4th international Conference on Persuasive Technology (pp. 1-7).
38. Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & psychophysics, 68(7), 1191-1203.
39. Garzonis, S., Bevan, C., & O'Neill, E. (2008, December). Mobile Service Audio Notifications: intuitive semantics and noises. In Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat (pp. 156-163).
40. Garzonis, S., Jones, S., Jay, T., & O'Neill, E. (2009, April). Auditory icon and earcon mobile service notifications: intuitiveness, learnability, memorability and preference. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1513-1522).
41. Gaver, W. W. (1989). The SonicFinder: An interface that uses auditory icons. Human–Computer Interaction, 4(1), 67-94.
42. Ghinea, G., & Ademoye, O. (2012). The sweet smell of success: Enhancing multimedia applications with olfaction. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 8(1), 1-17.
43. Green, M., Odom, J. V., & Yates, J. T. (1995). Measuring situational awareness with the “Ideal Observer”. In Proceedings of the International Conference on Experimental Analysis and Measurement of Situation Awareness.
44. Grudin, J. (2001). Desituating action: Digital representation of context. Human–Computer Interaction, 16(2-4), 269-286.
45. Hall, S. R. (1928). Mail-order and Direct-mail Selling: A Treatise Covering the Fundamentals of the Dual Field of Mail-order and Direct-mail Activities and the Methods Used by Successful Practitioners. McGraw-Hill book Company, Incorporated.
46. Hansson, R., Ljungstrand, P., & Redström, J. (2001, September). Subtle and public notification cues for mobile devices. In International Conference on Ubiquitous Computing (pp. 240-246). Springer, Berlin, Heidelberg.
47. Harwood, K., Barnett, B., & Wickens, C. D. (1988, April). Situational awareness: A conceptual and methodological framework. In Proceedings of the 11th Biennial Psychology in the Department of Defense Symposium (pp. 23-7). US Air Force Academy.
48. Hazlewood, W. R. (2011). Designing and evaluating ambient displays in the wild: Indiana University.
49. Herz, R. S., & Engen, T. (1996). Odor memory: Review and analysis. Psychonomic Bulletin & Review, 3(3), 300-313.
50. Ho, J., & Intille, S. S. (2005, April). Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 909-918).
51. Hoggan, E., Anwar, S., & Brewster, S. A. (2007, November). Mobile multi-actuator tactile displays. In International Workshop on Haptic and Audio Interaction Design (pp. 22-33). Springer, Berlin, Heidelberg
52. Hong, J.-y., Suh, E.-h., & Kim, S.-J. (2009). Context-aware systems: A literature review and classification. Expert Systems with applications, 36(4), 8509-8522.
53. Hoober, S., & Berkman, E. (2011). Designing Mobile Interfaces: Patterns for Interaction Design: " O'Reilly Media, Inc.".
54. Horvitz, E. C. M. C. E. (2001). Notification, disruption, and memory: Effects of messaging interruptions on memory and performance. In Human-Computer Interaction: INTERACT (Vol. 1, p. 263).
55. Hwang, J., & Hwang, W. (2011). Vibration perception and excitatory direction for haptic devices. Journal of Intelligent Manufacturing, 22(1), 17-27.
56. Iqbal, S. T., & Bailey, B. P. (2008, April). Effects of intelligent notification management on users and their tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 93-102).
57. Jensen, R. S. (1997). The boundaries of aviation psychology, human factors, aeronautical decision making, situation awareness, and crew resource management. The International Journal of Aviation Psychology, 7(4), 259-267.
58. Jones, L., Bowers, C. A., Washburn, D., Cortes, A., & Satya, R. V. (2004). The effect of olfaction on immersion into virtual environments. Human performance, situation awareness and automation: Issues and considerations for the 21st century, 282-285.
59. Jung, S., Wood, A. L., Hoermann, S., Abhayawardhana, P. L., & Lindeman, R. W. (2020, March). The impact of multi-sensory stimuli on confidence levels for perceptual-cognitive tasks in vr. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 463-472). IEEE.
60. Kaber, D. B., & Endsley, M. R. (1997). Out‐of‐the‐loop performance problems and the use of intermediate levels of automation for improved control system functioning and safety. Process Safety Progress, 16(3), 126-131.
61. Kahneman, D. (1973). Attention and effort (Vol. 1063): Citeseer.
62. Kay, L. M. (2011). Olfactory coding: random scents make sense. Current Biology, 21(22), R928-R929.
63. Kaye, J. N. (2001). Symbolic olfactory display. Master's Thesis. Media Arts and Sciences School of Architecture and Planning, Massachusetts Inst. of Technology.
64. Keller, A., Hempstead, M., Gomez, I. A., Gilbert, A. N., & Vosshall, L. B. (2012). An olfactory demography of a diverse metropolitan population. BMC neuroscience, 13(1), 1-17.
65. Komninos, A., Besharat, J., Stefanis, V., Gogoulou, G., & Garofalakis, J. (2019). Assessing the perceptibility of smartphone notifications in smart lighting spaces. Journal of Ambient Intelligence and Smart Environments, 11(3), 277-297.
66. Konishi, Y., Hanamitsu, N., Outram, B., Minamizawa, K., Mizuguchi, T., & Sato, A. (2016). Synesthesia suit: the full body immersive experience. Paper presented at the ACM SIGGRAPH 2016 VR Village.
67. Kramer, G. J. A. d.-S., audification, & interfaces, a. (1994). An introduction to auditory display. 1-77.
68. Künzler, F., Kramer, J. N., & Kowatsch, T. (2017, October). Efficacy of mobile context-aware notification management systems: A systematic literature review and meta-analysis. In 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 131-138). IEEE.
69. Lee, H. P., & Lim, S. P. (2014). Comparative studies of perceived vibration strength for commercial mobile phones. Applied ergonomics, 45(3), 807-810.
70. Leiva, L., Böhmer, M., Gehring, S., & Krüger, A. (2012, September). Back to the app: the costs of mobile application interruptions. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services (pp. 291-294).
71. Mark, G., Voida, S., & Cardello, A. (2012, May). " A pace not dictated by electrons" an empirical study of work without email. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 555-564).
72. Marks, L. E. (1975). On colored-hearing synesthesia: cross-modal translations of sensory dimensions. Psychological bulletin, 82(3), 303.
73. Martino, G., & Marks, L. E. (2000). Cross-modal interaction between vision and touch: the role of synesthetic correspondence. Perception, 29(6), 745-754.
74. Matviienko, A., Rauschenberger, M., Cobus, V., Timmermann, J., Fortmann, J., Löcken, A., ... & Boll, S. (2015). Towards new ambient light systems: a close look at existing encodings of ambient light systems. Interaction Design and Architecture (s). 2015;(26): 10-24.
75. McCrickard, D. S., Catrambone, R., Chewar, C. M., & Stasko, J. T. (2003). Establishing tradeoffs that leverage attention for utility: empirically evaluating information display in notification systems. International Journal of Human-Computer Studies, 58(5), 547-582.
76. Nakamoto, T., & Yoshikawa, K. (2006). Movie with scents generated by olfactory display using solenoid valves. IEICE transactions on fundamentals of electronics, communications and computer sciences, 89(11), 3327-3332.
77. Neisser, U. (1976). Cognition and reality. Principles and implication of cognitive psychology. San Francisko: WH Freeman and Company.
78. Nielsen, J. (1999). Designing web usability: The practice of simplicity: New Riders Publishing.
79. Niikura, T., Hirobe, Y., Cassinelli, A., Watanabe, Y., Komuro, T., & Ishikawa, M. (2010). In-air typing interface for mobile devices with vibration feedback. In ACM SIGGRAPH 2010 Emerging Technologies (pp. 1-1).
80. Norman, D. (2013). The design of everyday things: Revised and expanded edition: Basic Books (AZ).
81. Pielot, M., Church, K., & De Oliveira, R. (2014, September). An in-situ study of mobile phone notifications. In Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services (pp. 233-242).
82. Polatidis, N., Georgiadis, C. K., Pimenidis, E., & Stiakakis, E. (2015, December). A method for privacy-preserving context-aware mobile recommendations. In International Conference on e-Democracy (pp. 62-74). Springer, Cham.
83. Réhman, S. u., Sun, J., Liu, L., & Li, H. (2008). Turn your mobile into the ball: rendering live football game using vibration. IEEE Transactions on Multimedia, 10(6), 1022-1033.
84. Riccò, D., Belluscio, A., & Guerini, S. (2003, September). Design for the Synesthesia. Audio, Visual and Haptic Correspondences Experimentation. In Proceedings of the 1st International Meeting of Science and Technology of Design, Lisbon, Portugal (pp. 25-26).
85. Richard, E., Tijou, A., Richard, P., & Ferrier, J. L. (2006). Multi-modal virtual environments for education with haptic and olfactory feedback. Virtual Reality, 10(3), 207-225.
86. Rouby, C., & Bensafi, M. (2002). Is there a hedonic dimension to odors. Olfaction, taste and cognition, 140-159.
87. Ryu, J., Jung, J., & Choi, S. (2008, March). Perceived magnitudes of vibrations transmitted through mobile device. In 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (pp. 139-140). IEEE.
88. Sahami Shirazi, A., Henze, N., Dingler, T., Pielot, M., Weber, D., & Schmidt, A. (2014, April). Large-scale assessment of mobile notifications. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 3055-3064).
89. Saket, B., Prasojo, C., Huang, Y., & Zhao, S. (2013, February). Designing an effective vibration-based notification interface for mobile phones. In Proceedings of the 2013 conference on Computer supported cooperative work (pp. 149-1504).
90. Salas, E., Prince, C., Bowers, C. A., Stout, R. J., Oser, R. L., & Cannon-Bowers, J. A. (1999). A methodology for enhancing crew resource management training. Human factors, 41(1), 161-172.
91. Sarter, N. B., & Woods, D. D. (1991). Situation awareness: A critical but ill-defined phenomenon. The International Journal of Aviation Psychology, 1(1), 45-57.
92. Sato, K. (2003). Context sensitive interactive systems design: A framework for representation of contexts. In Proceedings of the 10th International Conference on Human–Computer Interaction (Vol. 3, pp. 1323-1327).
93. Sayin, E., Krishna, A., Ardelet, C., Decré, G. B., & Goudey, A. J. I. J. o. R. i. M. (2015). “Sound and safe”: The effect of ambient sound on the perceived safety of public spaces. 32(4), 343-353.
94. Schmidt, A. (2000). Implicit human computer interaction through context. Personal technologies, 4(2-3), 191-199.
95. Schmidt, A., Beigl, M., & Gellersen, H.-W. (1999). There is more to context than location. Computers & Graphics, 23(6), 893-901.
96. Schopper, A. W. (1997). Situational Awareness in the Tactical Air Environment: Augmented Proceedings of the Naval Air Warfare Center's First Annual Symposium. CREW SYSTEM ERGONOMICS INFORMATION ANALYSIS CENTER WRIGHT-PATTERSON AFB OH.
97. Seigneuric, A., Durand, K., Jiang, T., Baudouin, J.-Y., & Schaal, B. J. P. (2010). The nose tells it to the eyes: crossmodal associations between olfaction and vision. 39(11), 1541-1554.
98. Severin, W. (1967). Another look at cue summation. AV Communication Review, 15(3), 233-245.
99. Smith, K., & Hancock, P. A. (1995). Situation awareness is adaptive, externally directed consciousness. Human factors, 37(1), 137-148.
100. Sohn, Y. W., & Doane, S. M. (2004). Memory processes of flight situation awareness: Interactive roles of working memory capacity, long-term working memory, and expertise. Human factors, 46(3), 461-475.
101. Stanton, N. A., Chambers, P. R., & Piggott, J. (2001). Situational awareness and safety. Safety science, 39(3), 189-204.
102. Tarasewich, P., Bhimdi, T., & Dideles, M. (2004, April). Testing visual notification cues on a mobile device. In CHI'04 Extended Abstracts on Human Factors in Computing Systems (pp. 1562-1562).
103. Tarasewich, P., Campbell, C. S., Xia, T., & Dideles, M. (2003, October). Evaluation of visual notification cues for ubiquitous computing. In International Conference on Ubiquitous Computing (pp. 349-366). Springer, Berlin, Heidelberg.
104. Tijou, A., Richard, E., & Richard, P. (2006, April). Using olfactive virtual environments for learning organic molecules. In International Conference on Technologies for E-Learning and Digital Entertainment (pp. 1223-1233). Springer, Berlin, Heidelberg.
105. Trivedi, M. M., Gandhi, T. L., & Huang, K. S. (2005). Distributed interactive video arrays for event capture and enhanced situational awareness. IEEE Intelligent Systems, 20(5), 58-66.
106. Walker, B. N., & Kramer, G. J. A. T. o. A. P. (2005). Mappings and metaphors in auditory displays: An experimental assessment. 2(4), 407-412.
107. Ware, C. (2012). Information visualization: perception for design: Elsevier.
108. Washburn, D. A., & Jones, L. M. (2004). Could olfactory displays improve data visualization? 6(6), 80-83.
109. White, T. L. (2011). The perceived urgency of tactile patterns. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING DIRECTORATE.
110. Wijaya, B. S. (2015). The development of hierarchy of effects model in advertising. International Research Journal of Business Studies, 5(1).
111. Williamson, J., Murray-Smith, R., & Hughes, S. (2007, April). Shoogle: excitatory multimodal interaction on mobile devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 121-124).
112. Yao, H.-Y., Grant, D., & Cruz, M. (2010). Perceived vibration strength in mobile devices: The effect of weight and frequency. IEEE transactions on haptics, 3(1), 56-62.
113. Yim, J., Myung, R., & Lee, B. (2007, July). The mobile phone’s optimal vibration frequency in mobile environments. In International Conference on Usability and Internationalization (pp. 646-652). Springer, Berlin, Heidelberg.
114. Yorkston, E. (2011). Auxiliary auditory ambitions: Assessing ancillary and ambient sounds. In Sensory Marketing (pp. 187-198): Routledge.
115. Zybura, M., & Eskeland, G. A. (1999). Olfaction for virtual reality. Quarter Project, Industrial Engineering, 543.
116. 陳建雄譯(2009)。互動設計。(原作者: Jennifer Preece, Yvonne Rogers, Helen Sharp)。全華圖書股份有限公司
117. 林敏譯(2014-7-1)。移動應用介面設計。(原作者:Steven Hoober ,Eric Berkman )。機械工業出版社

QR CODE