簡易檢索 / 詳目顯示

研究生: 潘俞臻
Yu-Zhen Pan
論文名稱: thiol-ene反應製備之交聯聚苯并咪唑陰離子交換膜與其性質探討
Fabrication of Crosslinked Polybenzimidazole-based Anion exchange membranes via thiol-ene reaction and Properties characterization
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 王英靖
Ying-Jing Wang
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 63
中文關鍵詞: 聚苯并咪唑thiol-ene反應陰離子交換膜
外文關鍵詞: polybenzimidazole, thiol-ene reaction, anion exchange membrane
相關次數: 點閱:319下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

陰離子交換膜(AEM)作為陰離子交換膜燃料電池(AEMFC)的核心成分,人們期望它具有高離子電導率,低溶脹率,良好的機械和熱穩定性。本研究將自行合成mPBI,經過強路易士鹼KOH將PBI之咪唑去質子化,接著以具有陽離子的(5-bromopentyl)trimethylammonium bromide藉由改變劑量比調控PBI的接枝,獲得具有不同IEC之高分子。接著接枝具有乙烯基的allyl bromide後,再將高分子以1,3-propanedithiol作為交聯劑,最後在製備薄膜時一併進行thiol-ene反應,成功以溶液澆鑄法塗佈成可饒式的交聯薄膜xQyPr。xQyPr在250 oC之前皆沒有明顯的重量損失,顯示有良好的熱穩定性。尺寸安定性在室溫下之吸水率介於15.5至49.3 %,溶脹程度介於6.8至22.5%,且交聯程度皆在93%以上,顯示出交聯能有效地提升薄膜的尺寸安定性。而機械性質的部分,xQyPr之乾膜(cl- form)拉伸強度為24.56到31.50MPa,濕膜(OH- form)拉伸強度為14.00到20.50MPa之間,顯示出良好的機械性質。將1.6Q0.3Pr進行陰離子傳導率的測試,在60 oC下可達49.14 mS/cm,在80 oC下可達61.06 mS/cm。


As the core component in anion exchange membrane fuel cell (AEMFC), anion exchange membranes (AEM) have been expected to possess high ionic conductivity, low swelling, excellent mechanical and thermal stabilities.
In this study, mPBI, grafted with cationic long carbon chains was synthesized, and different IEC polymers were obtained by controling the PBI grafted with different dose ratio. Then the side group with vinyl group was grafted and the thiol-ene reaction was carried out at the same time when the film was prepared. The xQyPr. film was successfully coated by solution casting method.
Then, the long side-chain (5-bromopentyl) trimethylammonium bromide) was grafted onto the mPBI with different IECs by controling the dose ratio. Then, the allyl bromide with vinyl group was grafted, and then the polymer was crosslinked with 1,3-propanedithiol. Finally, the thiol-ene reaction was carried out during the preparation of the film, and the xQyPr film was successfully coated by solution casting method. xQyPr no weight loss was detected before 250 oC and showed good thermal stability. The water uptake at room temperature ranged from 15.5 to 49.3%, the swelling degree ranged from 6.8 to 22.5%, and the crosslinking degree was above 93%, indicating that the cross-linking can effectively improve the dimensional stability of the films. In the mechanical propertie part, the tensile strength of the dry film (cl- form) is 24.56 to 31.50 MPa, and the tensile strength of the wet film (OH- form) is 14 and 20.50 MPa, showing a good mechanical property. The hydroxide ion conductivity of 1.6Q0.3Pr at 60 oC was 49.14 mS/cm, and was 61.06 mS/cm at 80 oC.

中文摘要 1 Abstract 2 目錄 3 Figure 索引 5 Table 索引 7 Scheme 索引 8 第一章 緒論 10 1.1前言 10 1.2 燃料電池類型 11 1.3 AEMFC之發電原理與構造 12 1.4 質子交換膜之介紹 15 1.5 陰離子交換膜之介紹 17 1.6 聚苯并咪唑之介紹 19 1.6.1聚苯并咪唑之改質 21 1.6.2 聚苯并咪唑在燃料電池之應用 24 1.6.3 鹼性安定性與降解機制 27 1.7 交聯 35 1.8 研究目的與動機 39 第二章 實驗部分 40 2.1 實驗藥品 40 2.2 實驗儀器 41 2.3 mPBI之合成 42 2.4 高分子改質 43 2.5 薄膜製作 44 第三章 結果與討論 45 3.1 合成與性質表徵 45 3.2 熱性質 48 3.3 IEC、尺寸安定性與交聯程度 49 3.4 機械性質 51 3.5 陰離子傳導率 52 第四章 結論 55 參考文獻 56

1. A.-C. Dupuis, Prog. Mater Sci., 2011, 56, 289-327.
2. Q. He and E. J. Cairns, Journal of The Electrochemical Society, 2015, 162, F1504-F1539.
3. J. A. Asensio, E. M. Sanchez and P. Gomez-Romero, Chem. Soc. Rev., 2010, 39, 3210-3239.
4. J.Larminie, A.Dicksin, Fuel Cell Systems Explained, Second Edition, John Wiley & Sons Ltd,2013
5. A. J. Appleby, F.R. Foulkes Fuel cell handbook /, Van Nostrand Reinhold, New York, 1989.
6. Q. Li, R. He, J. O. Jensen and N. J. Bjerrum, Chem. Mater., 2003, 15, 4896-4915.
7. Y. Z. Zhuo, A. L. Lai, Q. G. Zhang, A. M. Zhu, M. L. Ye and Q. L. Liu, Journal of Materials Chemistry A, 2015, 3, 18105-18114.
8. J. R. Varcoe, R. C. T. Slade, G. L. Wright and Y. Chen, The Journal of Physical Chemistry B, 2006, 110, 21041-21049.
9. Y. S. Li, T. S. Zhao and Z. X. Liang, J. Power Sources, 2009, 187, 387-392.
10. E. Agel, J. Bouet and J. F. Fauvarque, J. Power Sources, 2001, 101, 267-274.
11. J. Wind, R. Späh, W. Kaiser and G. Böhm, J. Power Sources, 2002, 105, 256-260.
12. D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowen, J. Appl. Electrochem., 2000, 30, 101-105.
13. D. García-Nieto and V. M. Barragán, Electrochimica Acta, 2015, 154, 166-176.
14. V. J. R. and S. R. C. T., Fuel Cells, 2005, 5, 187-200.
15. H. Zhang and P. K. Shen, Chem. Rev., 2012, 112, 2780-2832.
16. K.-D. Kreuer, S. J. Paddison, E. Spohr and M. Schuster, Chemical Reviews, 2004, 104, 4637-4678.
17. A. Z. Weber and J. Newman, Journal of The Electrochemical Society, 2004, 151, A326.
18. K. N. Grew and W. K. S. Chiu, Journal of The Electrochemical Society, 2010, 157, B327.
19. Y. Xiong, J. Fang, Q. H. Zeng and Q. L. Liu, J. Membr. Sci., 2008, 311, 319-325.
20. M. R. Hibbs, C. H. Fujimoto and C. J. Cornelius, Macromolecules, 2009, 42, 8316-8321.
21. A. D. Mohanty, S. E. Tignor, J. A. Krause, Y.-K. Choe and C. Bae, Macromolecules, 2016, 49, 3361-3372.
22. H.-S. Dang, E. A. Weiber and P. Jannasch, Journal of Materials Chemistry A, 2015, 3, 5280-5284.
23.G. Wang, Y. Weng, D. Chu, R. Chen and D. Xie, J. Membr. Sci., 2009, 332, 63-68.
24. Z. Xia, S. Yuan, G. Jiang, X. Guo, J. Fang, L. Liu, J. Qiao and J. Yin, J. Membr. Sci., 2012, 390-391, 152-159.
25. M. G. Marino, J. P. Melchior, A. Wohlfarth and K. D. Kreuer, J. Membr. Sci., 2014, 464, 61-71.
26. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu and L. Zhuang, Energy Environ. Sci., 2014, 7, 3135-3191.
27. H. Yanagi and K. Fukuta, ECS Transactions, 2008, 16, 257-262.
28. J. Kizewski, N. Mudri, R. Zeng, S. Poynton, R. C. T. Slade and J. R. Varcoe, ECS Transactions, 2010, 33, 27-35.
29. H. Vogel and C. S. Marvel, J. Polym. Sci, 1961, 50, 511-539.
30. Y. Iwakura, K. Uno and Y. Imai, Journal of Polymer Science Part A: General Papers, 1964, 2, 2605-2615.
31. H. J. Kim, S. Y. Cho, S. J. An, Y. C. Eun, J. Y. Kim, H. K. Yoon, H. J. Kweon and K. H. Yew, Acta Polymerica, 2004, 25, 894-897.
32. M. Ueda, M. Sato and A. Mochizuki, Macromolecules, 1985, 18, 2723-2726.
33. P. E. Eaton, G. R. Carlson and J. T. Lee, The Journal of Organic Chemistry, 1973, 38, 4071-4073.
34. Q. Li, J. O. Jensen, R. F. Savinell and N. J. Bjerrum, Prog. Polym. Sci., 2009, 34, 449-477.
35. P. Hongting and L. Gaihua, Polym. Int., 2005, 54, 175-179.
36. S.-K. Kim, T.-H. Kim, J.-W. Jung and J.-C. Lee, Polymer, 2009, 50, 3495-3502.
37. T.-H. Kim, S.-K. Kim, T.-W. Lim and J.-C. Lee, J. Membr. Sci., 2008, 323, 362-370.
38. C. Shih-Wei and H. S. Lien-Chung, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 4508-4513.
39. J. Yang, Q. Li, L. N. Cleemann, C. Xu, J. O. Jensen, C. Pan, N. J. Bjerrum and R. He, J. Mater. Chem., 2012, 22, 11185-11195.
40. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell and M. Litt, J. Electrochem. Soc., 1995, 142, L121-L123.
41. K. Hyoung-Juhn, C. S. Yong, A. S. Jin, E. Y. Chan, K. Ju-Yong, Y. Hae-Kwon, K. Ho-Jin and Y. K. Han, Acta Polymerica, 2004, 25, 894-897.
42. A. J. Antonio, B. Salvador and G.-R. Pedro, J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 3703-3710.
43. R. Bouchet and E. Siebert, Solid State Ionics, 1999, 118, 287-299.
44. B. C. Benicewicz, L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E.-W. Choe, D. Rogers and T. Apple, 2005, 17, 5328.
45. S.Yu, H. Zhang.L. Xiao, E.-W Choe. and B. C Benicewicz., Fuel Cells, 2009, 9, 318-324.

46. L.-c. Jheng, S. L.-c. Hsu, B.-y. Lin and Y.-l. Hsu, J. Membr. Sci., 2014, 460, 160-170.
47. O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni and S. Holdcroft, Polym. Chem., 2011, 2, 1641-1643.
48. O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni and S. Holdcroft, Journal of the American Chemical Society, 2012, 134, 10753-10756.
49. A. G. Wright and S. Holdcroft, ACS Macro Lett., 2014, 3, 444-447.
50. M. Carmo, G. Doubek, R. C. Sekol, M. Linardi and A. D. Taylor, J. Power Sources, 2013, 230, 169-175.
51. M. Tanaka, M. Koike, K. Miyatake and M. Watanabe, Polym. Chem., 2011, 2, 99-106.
52. S. Holdcroft, Chem. Mater., 2014, 26, 381-393.
53. D. Henkensmeier, H.-R. Cho, H.-J. Kim, C. Nunes Kirchner, J. Leppin, A. Dyck, J. H. Jang, E. Cho, S.-W. Nam and T.-H. Lim, Polym. Degrad. Stab., 2012, 97, 264-272.
54. G. Couture, A. Alaaeddine, F. Boschet and B. Ameduri, Prog. Polym. Sci., 2011, 36, 1521-1557.
55. M. Mamlouk and K. Scott, J. Power Sources, 2012, 211, 140-146.
56. A. C. Cope and E. R. Trumbull, in Organic Reactions, John Wiley & Sons, Inc., 2004, DOI: 10.1002/0471264180.or011.05.
57. S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson and B. S. Pivovar, The Journal of Physical Chemistry C, 2010, 114, 11977-11983.
58. A. C. Cope and A. S. Mehta, Journal of the American Chemical Society, 1963, 85, 1949-1952.
59. S. Chempath, B. R. Einsla, L. R. Pratt, C. S. Macomber, J. M. Boncella, J. A. Rau and B. S. Pivovar, The Journal of Physical Chemistry C, 2008, 112, 3179-3182.
60. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, XuTongwen and L. Zhuang, Energy Environ. Sci., 2014, 7, 3135-3191.
61. C. G. Arges and V. Ramani J. Electrochem. Soc., 2013, 160, F1006.
62. P. Jannasch and E. A. Weiber, Macromol. Chem. Phys., 2016, 217, 1108-1118.
63. H.-S. Dang and P. Jannasch, Journal of Materials Chemistry A, 2016, 4, 17138-17153.
64. Y. Yang, J. Wang, J. Zheng, S. Li and S. Zhang, Journal of Membrane Science, 2014, 467, 48-55.
65.Y. Ye and Y. A. Elabd, Macromolecules, 2011, 44, 8494-8503.
66. Z. Kelemen, B. Péter-Szabó, E. Székely, O. Hollóczki, D. S. Firaha, B. Kirchner, J. Nagy and L. Nyulászi, Chemistry – A European Journal, 2014, 20, 13002-13008.
67. O. Hollóczki, P. Terleczky, D. Szieberth, G. Mourgas, D. Gudat and L. Nyulászi, Journal of the American Chemical Society, 2011, 133, 780-789.
68. Y.-B. Wang, Y.-M. Wang, W.-Z. Zhang and X.-B. Lu, Journal of the American Chemical Society, 2013, 135, 11996-12003.
69. K. M. Hugar, H. A. Kostalik and G. W. Coates, Journal of the American Chemical Society, 2015, 137, 8730-8737.
70. B. Lin, H. Dong, Y. Li, Z. Si, F. Gu and F. Yan, Chem. Mater., 2013, 25, 1858-1867.
71. F. Gu, H. Dong, Y. Li, Z. Si and F. Yan, Macromolecules, 2014, 47, 208-216.
72. C. Yang, S. Wang, W. Ma, L. Jiang and G. Sun, Journal of Materials Chemistry A, 2015, 3, 8559-8565.
73. M. M. G. and K. K. D., ChemSusChem, 2015, 8, 513-523.
74. J. Cheng, G. He and F. Zhang, Int. J. Hydrogen Energy, 2015, 40, 7348-7360.
75. L. Zhi, Z. Xiuling, W. Guangfu, H. Xixin and L. Dezhi, Journal of Polymer Science Part B: Polymer Physics, 2013, 51, 1632-1638.
76. W. Lu, Z.-G. Shao, G. Zhang, J. Li, Y. Zhao and B. Yi, Solid State Ionics, 2013, 245-246, 8-18.
77. W. Wang, S. Wang, W. Li, X. Xie and Y. lv, Int. J. Hydrogen Energy, 2013, 38, 11045-11052.
78. E. N. Komkova, D. F. Stamatialis, H. Strathmann and M. Wessling, J. Membr. Sci., 2004, 244, 25-34.
79. A. H. N. Rao, S. Nam and T.-H. Kim, RSC Advances, 2016, 6, 16168-16176.
80. A. M. Park, F. E. Turley, R. J. Wycisk and P. N. Pintauro, Macromolecules, 2014, 47, 227-235.
81. H. Sun, G. Zhang, Z. Liu, N. Zhang, L. Zhang, W. Ma, C. Zhao, D. Qi, G. Li and H. Na, Int. J. Hydrogen Energy, 2012, 37, 9873-9881.
82. C. H. Zhao, Y. Gong, Q. L. Liu, Q. G. Zhang and A. M. Zhu, Int. J. Hydrogen Energy, 2012, 37, 11383-11393.
83. S. Gu, R. Cai and Y. Yan, Chem. Commun., 2011, 47, 2856-2858.
84. Y. Özdemir, N. Özkan and Y. Devrim, Electrochim. Acta, 2017, 245, 1-13.
85. H. Xu, K. Chen, X. Guo, J. Fang and J. Yin, J. Membr. Sci., 2007, 288, 255-260.
86. H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004-2021.
87. A. Jacobine, In Radiation Curing in Polymer Science and Technology III, Elsevier: London, 1993.
88.L. Zhu, T. J. Zimudzi, N. Li, J. Pan, B. Lin and M. A. Hickner, Polym. Chem., 2016, 7, 2464-2475.
89. S. Li, X. Zhu, D. Liu and F. Sun, J. Membr. Sci., 2018, 546, 15-21.

90. S. Samms, Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments, 1996.
91. J. Hao, Y. Jiang, X. Gao, W. Lu, Y. Xiao, Z. Shao and B. Yi, J. Membr. Sci., 2018, 548, 1-10.

QR CODE