簡易檢索 / 詳目顯示

研究生: 王鴻林
Hung-lin Wang
論文名稱: 法洛氏四重症術後之肺動脈流場型態分析
Analysis of flow patterns in pulmonary artery after repair of Tetralogy of Fallot
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 吳銘庭
nnone
孫珍理
none
趙修武
nonne
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 109
中文關鍵詞: 法洛氏四重症倒流率比肺動脈分歧管倒流
外文關鍵詞: pulmonary artery, bifurcation tube, regurgitation., rgurgitation ratio, Tetralogy of Fallot(TOF)
相關次數: 點閱:108下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用數值方法來模擬新生兒先天性心臟疾病之一的法洛氏四重症,針對分歧肺動脈內之流場型態分析。利用改變不同的主肺動脈倒流率比(b/f)此參數來模擬不同的狀態,觀察肺動脈內之流場型態的變化,並分析左右肺動脈之倒流率與淨流量的數值結果。在醫院所量測到的數值來看,發現左肺動脈倒流率會比右肺動脈高。而本研究目的是利用數值方法解析肺動脈中的流場變化,進一步說明其結果之原因。
    在此利用流場型態來分析,因左肺動脈皆會比右肺動脈早產生倒流之情形,且左肺動脈倒流經過時間也較久,所以可得知左肺動脈倒流率高於右肺動脈。利用所計算出的數值可得知,若是提高主肺動脈倒流率,亦即倒流較嚴重的情況下,左右的肺動脈倒流率也隨之增大。在本研究利用數值方法以及醫學所量測的數據中,左肺動脈倒流率值(b/f)是比右肺動脈高的。這與流場型態分佈是可相呼應的。
    並且在主肺動脈倒流率很低時,發現在左右肺動脈的淨流量值相差很小。反之,當主肺動脈倒流率增大時,左右肺動脈的淨流量值相差就越大。


    The aims of this study are using numerical approaches to simulate flow variations in pulmonary artery of patients of Tetralogy of Fallot, which is one of the congenital heart diseases in children. We analyze the flow patterns in an in vitro bifurcation pulmonary artery and consider effects of various regurgitation ratios(b/f) in left pulmonary artery(LPA) and right pulmonary artery(RPA). We do not only observe the variation of flow patterns, but also analyze the results of b/f and volumetric flow rates in LPA and RPA. In general, the b/f of LPA is higher than RPA in the mesured data provided by Kaohsiung veterans general hospital. We validate the result using numerical approaches to analyze the flow patterns in pulmonary artery in this study.
    We use predicted flow patterns to explain why the b/f of LPA is higher than RPA. It is because the duration of regurgitation in LPA is longer than in RPA. In terms of predicted results, we can know if the b/f of main pulmonary artery(MPA) increases, so will b/fs of LPA and RPA. The b/f of LPA is higher than RPA both in this study and the mesured data of the hospital. It is consistent with the flow patterns predicted by this study. We also can find the difference of netflow between LPA and RPA is tiny when the b/f of MPA is low. On the contrast, the difference of netflow between LPA and RPA will increase if the b/f of MPA is raised.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 導論 1.1 研究動機與研究目的. . . . . . . . . . . . . . . . . . . ...... . . . . . 1 1.2 法洛氏四重症(TOF, Tetralogy Of Fallot) . . . . . . . . . ............. . 2 1.3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 8 2 物理模型與數值分析 11 2.1 肺動脈的幾何模型簡介與建構方法. . . . . . . . . . ......... . . . . . . 11 2.2 數學模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 統御方程式..... . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 流場參數之定義......... . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 邊界條件....... . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 計算流體軟體之簡介及方法..... . . . . . . . . . . . . ... . . . . . . . 17 2.4 計算網格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 19 2.4.1 網格點的產生方法....... . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2 格點模型的建立......... . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 數值模擬模式與參數設定..... . . . . . . . . . . . . . . . . . . . . . . 21 2.6 計算設備和時間... . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 流場型態分析 23 3.1 流場特性介紹... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 不同倒流率下之肺動脈流場型態分析......... . . . . . . . . . . . . . . . 25 3.3 不同幾何外型下之肺動脈流場型態分............. . . . . . . . . . . . . . 28 3.4 不同倒流率值的三維運動流線探討 . . . . . ........ . . . . . . . . . . . 30 3.5 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 數值結果與醫學量測之討論  33 4.1 數值運算之結果分析..... . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 主肺動脈的倒流率變化之數值比較............... . . . . . . . . . . . . 34 4.1.2 左肺動脈的幾何外型與數值結果變化之比較................. . . . . . . . 35 4.2 醫學量測與數值運算的比較與討論......... . . . . . . . . . . . . . . . . 36 4.2.1 二維肺動脈的幾何外型與左右肺動脈倒流率之影響................... . . . 36 4.2.2 三維主肺動脈倒流率變化對左右肺動脈倒流率之關係..................... . 38 4.3 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 結論與建議 41 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    [1] Kang, I.S., Rrdington, A.N., Benson, L.N., Macgowan, C., Valsangiacomo,
    E.R., Roman, K., Kellenberger, C.J. and Yoo, S.J., 2003, Differential re-
    gurgitation in branch pulmonary arteries after repair of tetralogy of fallot.
    Circulation. 107, pp. 2938-2943.
    [2] Frigiola, A., Redington, A.N., Cullen, S. and Vogel, M., 2004, Pulmonary
    regurgitation is an important determinant of right ventricular contractile dys-
    function in patients with surgically repaired tetralogy of Fallot. Circulation
    110, pp. 153I-157.
    [3] McElhinney, D.B., Parry, A.J., Reddy, V.M., Hanley, F.L. and Stanger, P.,
    1998, Left pulmonary artery kinking caused by outflow tract dilatation af-
    ter transannular patch repair of tetralogy of fallot. The Annals of Thoracic
    Surgery 65, pp. 1120-6.
    [4] Pozzi, M., Trivedi, D.B., Kitchiner, D. and Arnold, R.A., 2000, Tetralogy of
    Fallot: what operation, at which age. European Journal of Cardio-thoracic
    Surgery 17, pp. 631-636.
    [5] Morgan, V.L., Roselli, R.J. and Lorenz, C.H., 1998, Normal three-dimensional
    pulmonary artery flow determined by phase contrast magnetic resonance
    imaging. Annals of Biomedical Engineering 26, pp. 557-566.
    [6] Migliavacca, F. and Dubini, G., 2005, Computational modeling of vascular
    anastomoses. Biomechanics and Modeling in Mechanobiology 3, pp. 235-250.
    [7] Laffon, E., Bernard, V., Montaudon, M., Marthan, R., Barat, J.L. and Lau-
    rent, F., 2001, Tuning of pulmonary arterial circulation evidenced by MR
    phase mapping in healthy volunteers. Journal of Applied Physiology 90, pp.
    469-474.
    [8] Tang, T., Chiu, I.S., Chen, H.C., Cheng, K.Y. and Chen, S.J., 2001, Compar-
    ison of pulmonary aterial flow phenomena in spiral and Lecompte models by computational fluid dynamics. The Journal of Thoracic and Cardiovascular
    Surgery 122, pp. 529-534.
    [9] Migliavacca, F., Dubini, G., Pennati, G., Pietrabissa, R., Fumero, R., Hsia,
    T.Y. and Leval, M.R., 2000, Computational model of the fluid dynamics in
    systemic-to-pulmonary shunts. Journal of Biomechanics 33, pp. 549-557.
    [10] Philpot, E.F., Yoganathan, A.P.,Woo, Y.R., Sung, H.W., Franch, R.H., Sahn,
    D.J. and Valdes-Cruz, L.M., 1985, In-vitro pulsatile flow visualization studies
    in a pulmonary artery model. Journal of Biomechanical Engineering 107, pp.
    368-375.
    [11] Sung, H.W., Hsu, T.L., Hsu, C.H. and Hsu, J.C., 1998, Pulmonary artery
    hemodynamics with varying degrees of valvular stenosis: an in vitro study.
    Journal of Biomechanics 31, pp. 1153-1161.
    [12] Feng, Z.C. and Poon, C.S., 1998, Pendelluft flow in symmetric airway bifur-
    cations. Journal of Biomechanical Engineering 120, pp. 463-467.
    [13] Socci, L., Gervaso, F., Migliavacca, F., Pennati, G., Dubini G., Ait-Ali, L.,
    Festa, P., Amoretti, F., Scebba, L. and Luisi, V.S., 2005, Computational fluid
    dynamics in a model of the total cavopulmonary connection reconstructed
    using magnetic images. Cardiology in the Young 15, pp. 61-67.
    [14] Pekkan, K., Z´elicourt, D., Ge, L., Sotiropoulos, F., Frakes, D., Fogel,
    M.A. and Yoganathan, A.P., 2005, Physics-driven CFD modeling of complex
    anatomical cardiovascular flows—A TCPC case study. Annals of Biomedical
    Engineering 33, pp. 284-300.
    [15] Pekkan, K., Kitajima, H.D., Zelicourt, D., Forbess, J.M., Parks, W.J., Fogel,
    M.A., Sharma, S., Kanter, K.R., Frakes, D. and Yoganathan, A.P., 2005,
    Total cavopulmonary connection flow with functional left pulmonary artery
    stenosis angioplasty and fenestration in vitro. Circulation 112, pp. 3264-3271.
    [16] Perry, A.E. and Steiner, T.R., 1987, Large-scale vortex structures in turbulent
    wakes behind bluff bodies. Part 1. Vortex formation process. Journal of Fluid
    Mechanics 174, pp. 233-270.
    [17] 蕭宏達 2005, 呼吸原理與粒子在分歧氣管之運動模擬. 國立台灣科技大學機械研究所碩士論文。

    QR CODE