簡易檢索 / 詳目顯示

研究生: 何曉幃
Sheau-wei Her
論文名稱: 肺動脈法洛氏四重症術後流場型態數值分析
Numerical study for blood flow in pulmonary arteris after repair of tetralogy of Fallot
指導教授: 陳明志
Ming-jyh Chern
口試委員: 吳銘庭
Ming-ting Wu
林益如
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 52
中文關鍵詞: 肺動脈倒流法洛氏四重症分歧角度肺動脈
外文關鍵詞: Pulmonary regurgitation, Tetralogy of Fallot, Bifurcation angle, Pulmonary artery
相關次數: 點閱:168下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 法洛氏四重症在經過肺動脈修復手術過後肺動脈倒流是常見的現象。根據臨床資料,可以得知左肺動脈的倒流率通常都比右肺動脈來的高,其可能與肺動脈中血液的流動型態有關係。因此,瞭解肺動脈中的血液動力學有助於理解其原因。本研究主要利用磁振造影影像重建成三維肺動脈模型,並且利用數值方法模擬於法洛氏四重症修復手術後肺動脈的血液流動變化,所使用的肺動脈模型外型由一位健康的人和三位經過法洛氏四重症修復手術後病人之磁振造影影像所獲得。為了探索肺動脈倒流的影響,考慮一個健康和三個經過法洛氏四重症修復手術後的肺動脈。
    依據數值模擬結果,血流會受到分歧角度以及肺動脈幾何的影響,倒流現象會先發生於法洛氏四重症修復手術後的左肺動脈,由於左肺動脈與主肺動脈的夾角較小。在心臟收縮加速期,迴流區會發生於左肺動脈其會阻礙血液流至左肺,另外,主肺動脈腫大經常發生於法洛氏四重症修復手術之後,在一個心跳的舒張期間發現一些強烈的渦旋會在其腫大的區域產生。當心臟收縮或舒張結束時,會發生混亂的流場型態,由於主肺動脈的血流方向發生改變,在肺動脈倒流期間可以發現主肺動脈腫大區導致異常的血流型態。而在健康的肺動脈中並沒有發生這些流場型態。我們也對壓力的分布進行分析,激烈的壓力變化發生於主肺動脈腫大處。將數值模擬的主肺動脈、左肺動脈和右肺動脈的倒流與相位對比磁振造影量測的資料做比較,在數值結果和量測資料之間具有良好的一致性。


    Pulmonary regurgitation (PR) is a common phenomenon in pulmonary arteries in patients after repair of tetralogy of Fallot (TOF). The regurgitation fraction of left pulmonary artery (LPA) is usually greater than right pulmonary artery (RPA) according to clinic data. It may be related to blood flow in pulmonary arteries. Therefore, understanding hemodynamics in pulmonary arteries helps to comprehend the reason. The aim of this study is to use 3-D reconstructed pulmonary artery models from magnetic resonance imaging (MRI) and to use numerical approaches for simulation of flow variations in pulmonary arteries after repair of TOF. The periphery of pulmonary artery is obtained from MRI of one healthy person and three patients after repair of TOF. To explore the effect of PR, one healthy and three pulmonary arteries after repair of TOF are considered.
    From the numerical results, the blood flow is influence by the bifurcation anglesand geometry of pulmonary artery. The regurgitation happens first in LPA after repair of TOF due to the small angle between LPA and main pulmonary artery (MPA). The recirculation region which obstructs forward blood flow to the left lung is found in LPA during acceleration of systole. In addition, the dilation ofMPA usually appears after repair of TOF. Strong vortices are found in the dilation area of MPA during diastole of a cardiac cycle. The complex blood flow patterns occur in end of systole and diastole because the directions of blood flow in MPA changes. It is found that the dilation causes abnormal flow distribution in MPA during regurgitation period in a cardiac cycle. The healthy person does not have those flow patterns. We also analysis the pressure distribution, the extreme pressure variations is in dilation area of MPA. Numerical data including regurgitation in MPA, LPA and RPA are compared with phase contrast MR measured data. Good agreements are found between numerical results and measured data.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Effect of Pulmonary Rigurgitation after Repair of TOF . . . . . . . . . . 2 1.2.1 Statistical Analysis using Phase Contrast MR Imaging . . . . . . . 2 1.2.2 Application of CFD on Homodynamics in Pulmonary Artery . . . . 3 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 6 2.1 MRI and Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Grid Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 RESULTS AND DISCUSSION 10 3.1 Influences of Bifurcation Angles and Geometry of Pulmonary Artery on Blood Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Analysis of Pressure Distribution . . . . . . . . . . . . . . . . . . . 12 3.3 Mass Flow Rate and Regurgitation . . . . . . . . . . . . . . . . . . . . 13 3.4 Comparison between Numerical Results and Clinical PC MR Measurement Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 CONCLUSIONS AND FUTURE WORK 15 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . 39

    [1] Ho, K.W., Tan, R.S., Wong, K.Y., Tan, T.H., Shankar, S. and Tan, J.L., 2007, Late complications following Tetralogy of Fallot repair: The need for long-term follow-up. Annals Academy of Medicine 36, 947-953.
    [2] Kang, I.S., Redington, A.N., Benson, L.N., Macgowan, C., Valsangiacomo, E.R., Roman, K., Kellenberger, C.J. and Yoo, S.J., 2003, Differential regurgitation in branch pulmonary arteries after repair of Tetralogy of Fallot: A phase-contrast cine magnetic resonance study. Circulation 107, 2938-2943.
    [3] Wu, M.T., Huang, Y.L., Hsieh, K.S., Huang, J.T., Peng, N.J., Pan, J.Y., Huang, J.S. and Yang, T.L., 2007, Influence of pulmonary regurgitation inequality on differential perfusion of the lungs in Tetralogy of Fallot after repair: A phase-contrast magnetic resonance imaging and perfusion scintigraphy study. Journal of the American College of Cardiology 49, 1880-1886.
    [4] Helbing, W.A., Niezen, R.A., Cessie, S.L., van der Geest, R.J., Ottenkamp, J. and de Roos, A., 1996, Right ventricular diastolic function in children with pulmonary regurgitation after repair of Tetralogy of Fallot: Volumetric evaluation by magnetic resonance velocity mapping. Journal of the American College of Cardiology 28, 1827-1835.
    [5] Frigiola, A., Redington, A.N., Cullen, S. and Vogel, M., 2004, Pulmonary regurgitation is an important determinant of right ventricular contractile dysfunction in patients with surgically repaired Tetralogy of Fallot. Circulation 110, 153-157.
    [6] van den Berg, J., Hop, W.C., Strengers, J.L.M., de Jongste, J.C., van Osch-Gevers, L., Meijboom, F.J., Pattynama, P.M.T., Bogers, A.J.J.C. and Helbing, W.A., 2007, Clinical condition at mid-to-late follow-up after transatrial-transpulmonary repair of tetralogy of Fallot. Journal of Thoracic and Cardiovascular Surgery 133, 470-477.
    [7] Grothoff, M., Spors, B., Abdul-Khaliq, H., Abd El Rahman, M., Alexi-Meskishvili, V., Lange, P., Felix, R. and Gutberlet, M., 2006, Pulmonary regurgitation is a powerful factor influencing QRS duration in patients after surgical repair of tetralogy of Fallot: A Magnetic Resonance Imaging (MRI) study. Clinical Research in Cardiology 95, 643-649.
    [8] Vliegen, H.W., van Straten, A., de Roos, A., Roest, A.A.W., Schoof, P.H., Zwinderman, A.H., Ottenkamp, J., van der Wall, E.E. and Hazekamp, M.G., 2002, Magnetic resonance imaging to assess the hemodynamic effects of pulmonary valve replacement in adults late after repair of Tetralogy of Fallot. Circulation 106, 1703-1707.
    [9] van Huysduynen, B.H., van Straten, A., Swenne, C.A., Maan, A.C., Ritsema van Eck, H.J., Schalij, M.J., van der Wall, E.E., de Roos, A., Hazekamp, M.G. and Vliegen, H.W., 2005, Reduction of QRS duration after pulmonary valve replacement in adult Fallot patients is related to reduction of right ventricular volume. European Heart Journal 26, 928-932.
    [10] Sung, H.W., Hsu, T.L., Hsu, C.H. and Hsu, J.C., 1998, Pulmonary artery hemodynamics with varying degrees of valvular stenosis: An in vitro study. Journal of Biomechanics 31, 1153-1161.
    [11] Tang, T., Chiu, I.S., Chen, H.C., Cheng, K.Y. and Chen, S.J., 2001, Comparison of pulmonary arterial flow phenomena in spiral and Lecompte models by computational fluid dynamics. Journal of Thoracic and Cardiovascular Surgery 122, 529-534.
    [12] Corno, A.F. and Mickaily-Huber, E.S., 2008, Comparative computational fluid dynamic study of two distal Contegra conduit anastomoses. Interactive Cardio Vascular and Thoracic Surgery 7, 1-5.
    [13] Chern, M.J., Wu, M.T., Wang, H.L., 2008, Numerical investigation of regurgitation phenomena in pulmonary arteries of Tetralogy of Fallot patients after repair. Journal of Biomechanics 41, 3002-3009.
    [14] Redaelli, A., Rizzo, G., Arrigoni, S., Di Martino, E., Origgi, D., Fazio, F. and Montevecchi, F., 2002, An assisted automated procedure for vessel geometry reconstruction and hemodynamic simulations from clinical imaging. Computerized Medical Imaging and Graphics 26, 143-152.
    [15] Tang, B.T., Fonte, T.A., Chan, F.P., Tsao, P.S., Feinstein, J.A. and Taylor, C.A., 2010, Three-dimensional hemodynamics in the human pulmonary arteries under resting and exercise conditions. Annals of Biomedical Engineering 39, 347-358. DOI:10.1007/s10439-010-0124-1. [Epub ahead of print]
    [16] Das, A., Banerjee, R.K. and Gottliebson, W.M., 2010, Right ventricular inefficiency in repaired Tetralogy of Fallot: Proof of concept for energy calculations from cardiac MRI data. Annals of Biomedical Engineering 38, 3674-3687.
    [17] Whitehead, K.K., Pekkan, K., Kitajima, H.D., Paridon, S.M., Yoganathan, A.P. and Fogel, M.A., 2007, Nonlinear power loss during exercise in single-ventricle patients after the Fontan. Circulation 116, 165-171.
    [18] Pekkan, K., Kitajima, H.D., de Zelicourt, D., Forbess, J.M., Parks, W.J., Fogel, M.A., Sharma, S., Kanter, K.R., Frakes, D. and Yoganathan, A.P., 2005, Total cavopulmonary connection flow with functional left pulmonary artery stenosis: Angioplasty and fenestration in vitro. Circulation 112, 3264-3271.
    [19] Hsia, T.Y., Migliavacca, F., Pittaccio, S., Radaelli, A., Dubini, G., Pennati, G. and de Leval, M., 2004, Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. Journal of Surgical Research 116, 305-313.
    [20] Sun, Q., Wan, D., Liu, J., Liu, Y., Zhu, M., Hong, H., Sun, Y. and Wang, Q., 2009, Influence of antegrade pulmonary blood flow on the hemodynamic performance of bidirectional cavopulmonary anastomosis: A numerical study. Medical Engineering & Physics 31, 227-233.
    [21] Pekkan, K., Dasi, L.P., Nourparvar, P., Yerneni, S., Tobita, K., Fogel, M.A., Keller, B. and Yoganathanb, A., 2008, In vitro hemodynamic investigation of the embryonic aortic arch at late gestation. Journal of Biomechanics 41, 1697-1706.
    [22] Wang, C., Pekkan, K., de Z´elicourt, D., Horner, M., Parihar, A., Kulkarni, A. and Yoganathan, A.P., 2007, Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Annals of Biomedical Engineering 35, 1840-1856.
    [23] Pedley, T.J., 1980. The fluid mechanics of large blood vessels. Cambridge University Press. Cambridge, U.K., ISBN 0521226260.
    [24] Berger, S.A. and Jou, L.D., 2000. Flows in stenotic vessels. Annual Reviews of Fluid Mechanics 32, 347-382.
    [25] Singh, M.P. and Sinha P.C., 1978, Flow in the entrance of the aorta. Journal of Fluid Mechanics 87, part 1, 97-120.
    [26] Zhu, H., Warner, J.J., Gehrig, T.R. and Friedman, M.H., 2002, Comparison of coronary artery dynamics pre- and post-stenting. Journal of Biomechanics 36, 689-697.
    [27] Perry, A.E. and Steiner, T.R., 1987, Large-scal vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation process. Journal of Fluid Mechanics 174, 233-270.

    QR CODE