簡易檢索 / 詳目顯示

研究生: 韋經智
Ching-chih Wei
論文名稱: 應用可視理論於五軸加工之夾持高度與刀軸角度最佳化
Applying Visibility Theorem to Optimize the Five-axis Machining Setup Height and Tool-axis Angle
指導教授: 李維楨
Wei-chen Lee
口試委員: 石伊蓓
Shih-yi Pei
林子寬
Tzu-kuan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 116
中文關鍵詞: 五軸加工可視理論機台干涉過行程刀軸角度夾持高度
外文關鍵詞: Five-axis machining, visibility map, intereference, over-traveling, tool angle, fixture height
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前在五軸加工流程中,CAM軟體路徑生成是以旋轉軸的範圍和刀具與工件間的干涉作為考量。然而,實際五軸加工過程中還會產生機台(主軸與工作台)干涉與過行程的問題,而這兩個問題並未於路徑生成中考慮,而要在路徑生成後經由機台模擬檢查加工路徑才會知道。一旦發現問題,則需嘗試透過調整刀具路徑或是工件夾持位置來解決,並重新產生新的路徑再進行機台模擬,如仍有問題則需重覆前述過程直到問題解決,如此是非常沒有效率之做法。本研究之目的為開發一組可實際應用於真實工件的分析程式,在執行CAM程式前先確定工件在機台上不會有機台干涉與過行程的問題,並於分析過程求出最佳的刀軸角度及夾持高度,然後再進行一次性的路徑生成。本研究的做法是為先將工件表面三角網格化,根據可視理論針對每一個三角面產生一可視性映射(V-map),然後以程式檢查於使用特定刀具下加工該面時刀具是否會與工件其他部份產生干涉、加工該三角面時機台是否會過行程、及機台是否會干涉等問題。最後再由程式計算出最低夾持高度及最小傾擺角度以最佳化這兩個參數,並可據此修改CAM的刀具路徑以將分析結果應用於實際切削過程中。於此研究中我們選用了四個模型進行探討,由結果可知:透過本研究所開發之分析程式,可直接分析工件是否可進行加工,並於後續刀路生成給予刀軸角度及夾持高度最佳化之建議,以減少CAM規劃時間、改善加工表面品質並提高加工效率。由於目前於業界並無類似本研究所開發之程式,故此分析程式對五軸加工業有實質的助益。


For current five-axis machining, the CAM (computer-aided manufacturing) software mainly concerns about the ranges of the two rotary axes, and the collision avoidance between the tool and the workpiece. However, there are still two potential problems in real cutting: one is the collision between the spindle and the work table; the other is over-traveling for the three linear axes. Both problems will not be found out until the tool paths are generated and used for the simulation of virtual cutting with a real machine model. If the mentioned problems occur, then we must adjust the position of the workpiece and regenerate the tool paths until the problems are solved by trial-and-error. Obviously, there is no guarantee that a viable solution can be found. The objective of this research was to develop a practical computer program to make sure that there are no mentioned problems for the workpiece so that the tool paths need to be generated only once. The method of this research was based on the visibility map (V-map). We converted the surfaces of the workpiece into a group of tiny triangular surfaces. For each triangular surface, we can use the developed program to check the visibility, over-traveling, and interference between the spindle and the work table. Next, we can use the program to find out the lowest fixture height and the smallest tool angle so that we can optimize these two parameters, and then we can use the optimized tool angle to modify the tool paths generated by the CAM software to improve the quality of cutting. Four cases were used in the study to demonstrate the benefits of the research. The main advantage of the computer program is to eliminate the trial-and-error in the CAM process to reduce the tool path planning time with the optimal setup. Currently there is no such program used in industry, so the research outcome can definitely be beneficial to the five-axis machining industry.

第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 研究目的 12 第二章 影像理論與座標轉換 14 2.1 影像理論 14 2.1.1 繪圖演算法 14 2.1.2 深度緩衝 16 2.2 座標轉換 18 2.2.1 基礎座標轉換矩陣 19 2.2.2 絕對與相對座標轉換 21 第三章 研究方法 23 3.1 程式架構 25 3.2 工件分析 29 3.2.1 遮蔽面分析 31 3.2.2 刀具干涉分析 33 3.3 機台可加工性 37 3.3.1 機台運動分析 38 3.3.2 機台可加工性分析 41 3.4 加工最佳化分析 43 3.4.1 最佳化條件定義 44 3.4.2 最佳化刀軸計算 46 3.5 程式分析示例 50 第四章 個案分析與實驗結果及討論 67 4.1 機台模型前處理 67 4.2 工件模型分析結果 69 4.2.1 方塊模型 70 4.2.2 倒勾模型 74 4.2.3 倒勾凹槽模型 80 4.2.4 1/4葉輪模型 84 4.3 加工路徑實驗與模擬 89 4.3.1 倒勾模型之加工實驗 89 4.3.2 葉輪模型之加工模擬 94 第五章 結論與未來展望 98 5.1 結論 98 5.2 未來展望 99 參考文獻 101 附錄 102

1. Chen, L.-L. and T.C. Woo. Computational geometry on the sphere with application to automated machining. in American Society of Mechanical Engineers, Design Engineering Division (Publication) DE. 1990.
2. Woo, T.C. and B.F. von Turkovich, Visibility Map and Its Application to Numerical Control. CIRP Annals - Manufacturing Technology, 1990. 39(1): p. 451-454.
3. Woo, T.C., Visibility maps and spherical algorithms. Computer-Aided Design, 1994. 26(1): p. 6-16.
4. Chen, L.L., S.Y. Chou, and T.C. Woo, Partial visibility for selecting a parting direction in mold and die design. Journal of Manufacturing Systems, 1995. 14(5): p. 319-330.
5. Chen, H.K., S.J. Hu, and T.C. Woo, Visibility analysis and synthesis for assembly fixture certification using theodolite systems. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2001. 123(1): p. 83-89.
6. Wang, N. and K. Tang, Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. Computer-Aided Design, 2007. 39(10): p. 841-852.
7. Hu, P., K. Tang, and C.-H. Lee, Global obstacle avoidance and minimum workpiece setups in five-axis machining. Computer-Aided Design, 2013. 45(10): p. 1222-1237.
8. Saito, T. and T. Takahashi, Comprehensible rendering of 3-D shapes. SIGGRAPH Comput. Graph., 1990. 24(4): p. 197-206.
9. Saito, T. and T. Takahashi, NC machining with G-buffer method. SIGGRAPH Comput. Graph., 1991. 25(4): p. 207-216.
10. Carter, J.A., T.M. Tucker, and T.R. Kurfess, 3-Axis CNC Path Planning Using Depth Buffer and Fragment Shader. Computer-Aided Design and Applications, 2008. 5(5): p. 612-621.
11. Balasubramaniam, M., et al., Generating 5-axis NC roughing paths directly from a tessellated representation. Computer-Aided Design, 2000. 32(4): p. 261-277.
12. Balasubramaniam, M., S.E. Sarma, and K. Marciniak, Collision-free finishing toolpaths from visibility data. Computer-Aided Design, 2003. 35(4): p. 359-374.
13. Bresenham, J.E., Algorithm for computer control of a digital plotter. IBM Systems Journal, 1965. 4(1): p. 25-30.
14. Catmull, E.E., A subdivision algorithm for computer display of curved surfaces, 1974, The University of Utah. p. 83.
15. Shinya, M. and M.-C. Forgue, Interference detection through rasterization. The Journal of Visualization and Computer Animation, 1991. 2(4): p. 132-134.

無法下載圖示 全文公開日期 2019/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE