簡易檢索 / 詳目顯示

研究生: 李依樺
Yi-Hua Li
論文名稱: 高效率近紅外光有機光感測器使用穿透式WO3/Ag/WO3多層膜電極之研製
High-performance Near-Infrared Transparent Organic Photodetector using a WO3/Ag/WO3 multilayer electrode
指導教授: 李志堅
Chih-Chien Lee
口試委員: 范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 穿透式有機光感測器WO3/Ag/WO3 (WAW)正偏壓
外文關鍵詞: Transparent Organic photodetector(TOPD), WO3/Ag/WO3 (WAW), forward bias
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用單層酞菁氯化鋁 (Chloroaluminum phthalocyanine, ClAlPc),做 為紅外光上轉換元件(Near-infrared-red organic upconversion devices)以及穿透式 有機光感測器(Transparent Organic photodetector, TOPD),ClAlPc 在上轉換元件 中做為載子產生層以及電洞阻擋層,結合高效率有機磷光錯體發光二極體做為 發光單元,經影像拍攝獲得 1587 dpi 的高解析度。
    利用 ClAlPc 在 780 nm 下的高紅外光吸收及單層拆解載子的特性,在實驗 過程中調整主動層及電子阻擋層之厚度與穿透電極 WO3/ Ag/ WO3 (WAW)結構 優化,使其元件於可見光穿透高達 80%。而一般常使用之不穿透厚電極 OPD 元件正偏壓(forward bias )3 V 下暗電流為 4.77×10-6 A/cm2,則最佳化穿透元件 可獲得 6.23×10-8 A/cm2 的低暗電流密度,此外在 780 nm 波長下的外部量子效 率(External Quantum Efficiency, EQE)達到了與厚電極相同的 50%高效率,對於 特定波段的感測度(Detectivity; D*)也超過了 1012 Jones。除了上述常見之基本元 件特性,本論文也量測分析了元件頻率響應(Frequency response)及暫態響應 (Transient response),獲得 3 V 下高達 739 kHz 的響應度,則上升與下降時間皆 為 0.78 μs,輸出了完美的方波數據。由此可知透過 WAW 的優化對於 TOPD 的 特性影響深遠,電極的厚薄使載子傳輸特性改變,因此獲取與主動層、電子阻 擋層匹配之結構,才能使元件達到平衡,進而完成高效能穿透式有機光感測器。


    An organic photodetector (OPD) with a charge generation layer (CGL) of Chlo- roaluminum phthalocyanine (ClAlPc) having high-infrared absorption at the wave- length of 780 nm was fabricated by adjusting the thickness of the active layer, electron blocking layer, and the WO3/Ag/WO3 (WAW) electrode, which showed the optical transparency up to 80% in the visible light range.
    IN general, the conventional OPD with thick opaque electrode shows the dark current of 4.77×10-6 A/cm2 at 3 V, while the optimized transparent OPD (TOPD) with ClAlPc as CGL can achieve a low dark current density of 6.23×10-8 A/cm2. In addition, the TOPD achieved the detectivity over 1012 Jones and the external quantum efficiency (EQE) of 50% at the wavelength of 780 nm, which is identical to that of an opaque OPD.
    This thesis also presents the data regarding the measurement and analysis of the frequency response (up to 739 kHz at 3 V) and transient response (the rise and fall times ~ 0.78 μs) of the TOPD. It was observed that the variation in thickness of WAW electrode influences carrier transport characteristics which, in turn, affects the charac- teristics of transparent Organic photodetector (TOPD). Therefore, the thickness of the WAW electrode, the CGL, and the electron blocking layer was optimized to achieve the high-performance TOPD.

    總目錄 中文摘要 ...................................................................................................................... I Abstract ...................................................................................................................... II 總目錄 ......................................................................................................................... V 圖目錄 ..................................................................................................................... VIII 表目錄 ...................................................................................................................... XII 第一章 緒論 ......................................................................................................1 1. 引言 ......................................................................................................1 1.2 上轉換元件文獻回顧之開發背景.....................................................................2 1.2.1 無機系統 ......................................................................................................3 1.2.2 無機混合有機系統 ......................................................................................5 1.2.3 有機系統 ....................................................................................................13 1.3 上轉換元件之未來展望 ..................................................................................18 1.4 有機光感測器(OPD)與光伏打電池(OPV)之差異 ........................................18 1.5 OPD影像感測器研究發展及文獻回顧........................................................18 1.6 OPD 之未來展望 .............................................................................................27 第二章 理論基礎 ............................................................................................28 2.1 有機半導體材料傳輸機制 ..............................................................................28 2.2 OPD與OPV工作原理..................................................................................30 2.3 有機發光二極體(OLED)工作原理 ...............................................................33 2.4 有機上轉換元件工作原理 .............................................................................36 2.5 量測單位與指標定義 .....................................................................................38 2.5.1 OLED 量測單位與定義 ............................................................................38 2.5.2 有機上轉換元件量測單位與定義............................................................39 2.5.3 OPD 與 OPV 量測單位與定義 .................................................................40 第三章 實驗儀器設備 ....................................................................................43 3.1 實驗儀器...........................................................................................................43 3.1.1 超音波清洗機............................................................................................43 3.1.2 加熱烤盤....................................................................................................43 3.1.3 旋轉塗佈機................................................................................................43 3.1.4 紫外光曝光機............................................................................................44 3.1.5 氧電漿清洗機............................................................................................45 3.1.6 高真空熱蒸鍍系統....................................................................................46 3.1.7 手套箱系統................................................................................................47 3.1.8 膜厚儀(α-step) ...........................................................................................48 3.1.9 太陽光模擬器............................................................................................49 3.1.10 外部效率量測系統..................................................................................49 3.1.11 光電子光譜儀(AC-2)...............................................................................50 3.1.12 UV-VIS 光譜儀........................................................................................50 3.1.13 NIR LED ..................................................................................................51 3.1.14 LED 驅動控制器 .....................................................................................51 3.1.15 頻率響應以及 Transient response...........................................................51 3.1.16 LDR 量測系統 .........................................................................................52 3.1.17 光功率計..................................................................................................53 3.1.18 材料純化系統..........................................................................................53 3.1.19 原子力顯微鏡(Atomic force microscope,AFM) .....................................53 3.1.20 輝度計......................................................................................................54 第四章 研究成果與討論 ................................................................................55 4.1 上轉換元件之結構設計 ..................................................................................55 4.1.1 載子產生層材料之選擇............................................................................55 4.1.2 發光單元之選擇........................................................................................57 4.1.3 完整結構探討............................................................................................59 4.2 上轉換元件之影像應用...................................................................................60 4.2.1上轉換元件之未來發展............................................................................62 4.3 OPD 之特性探討 .............................................................................................63 4.3.1 穿透結構設計 ............................................................................................63 4.3.2 陰極厚度對電性的影響............................................................................67 4.3.3 元件 EQE 及 Responsivity ........................................................................73 4.3.4 Detectivity (D*)..........................................................................................74 4.3.5 頻率響應與暫態響應................................................................................74 4.3.6 LDR 分析 ...................................................................................................76 第五章 結論 ...............................................................................................................77 參考資料 ....................................................................................................................78

    [1] H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, “Ultralow-power organic complementary circuits,” Nature, 15, 445 (2007).
    [2] C. W. Tang and S. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913 (1987).
    [3] C. W. Tang, “Two‐layer organic photovoltaic cell,” Appl. Phys. Lett., 48, 183 (1986).
    [4] P. Heremans, G. H. Gelinck, R. Müller, K. J. Baeg, D. Y. Kim and Y. Y. Noh, “Polymer and organic nonvolatile memory devices,” Chem. Mater., 23, 341 (2011).
    [5] J. Tao, J.Chen, D. Ban, M .G. Helander and Z. H. Lu, “Optical up-conversion devices for infrared detection and imaging,” Sci. Adv. Mater., 4, 266 (2012).
    [6] B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaa-
    sand and J. Butler, “Non-invasive in vivo characterization of breast tumors using
    photon migration spectroscopy,” Neoplasia, 2, 26 (2000).
    [7] R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G.
    Lovhoiden and C. Vrancken, “Vein imaging: a new method of near infrared im- aging, where a processed image is projected onto the skin for the enhancement of vein treatment,” Dermatol. Surg., 32, 1031 (2006).
    [8] K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang and H. Dai, “A route to brightly fluorescent carbon nanotubes for near-infrared imag- ing in mice,” Nat. Nanotechnol., 4, 773 (2009).
    [9] X. Gao, Y. Cui, R. M. Levenson, L.W.K.Chung and S. Nie, “In vivo cancer tar- geting and imaging with semiconductor quantum dots,” Nat. Biotechnol., 22, 969 (2004).
    [10] H. Luo, D. Ban, H. C. Liu, P. J. Poole and M. Buchanan, “Pixelless imaging device using optical up-converter,” IEEE Electron Device Lett., 25, 129 (2004).
    [11] D. Ban, H. Luo, H. C. Liu, Z. R. Wasilewski, A. J. Spring Thorpe, R. Glew and M. Buchanan, “Optimized GaAs∕AlGaAs light-emitting diodes and high effi- ciency wafer-fused optical up-conversion devices,” J. Appl. Phys., 96, 5243 (2004).
    [12] D. Ban, S. Han, Z. H. Lu, T. Oogarah, A. J. SpringThorpe and H. C. Liu, “Near-infrared to visible light optical upconversion by direct tandem integration of or- ganic light-emitting diode and inorganic photodetector,” Appl. Phys. Lett., 90, 093108 (2007).
    [13] D. Y. Kim, D. W. Song, N. Chopra, P. De Somer and F. So, “Organic infrared upconversion device,” Adv. Mater., 22, 2260 (2010).
    [14] J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu and Z. Lu, “Hybrid organic/inorganic optical up-converter for pixel-less near-infrared imaging,” Adv. Mater., 24, 3138 (2012).
    [15] M. Guan, L.S Li, G.H Cao, Y. Zhang, B.Q Wang, X.B Chu, Z.P Zhu and Y.P Zeng, “Organic light-emitting diodes with integrated inorganic photo detector for near-infrared optical up-conversion,” Org. Electron., 12, 2090 (2011).
    [16] J. Chen, J. Tao, D. Ban, M. G. Helander, Z. Wang, J. Qiu and Z. Lu,“Hybrid or- ganic/inorganic optical up-converter for pixel-less near-infrared imaging,” Adv. Mater., 24, 3138 (2012).
    [17] D. Y. Kim, T. H. Lai, J. W. Lee, J. R. Manders and F. So, “Multi-spectral imaging with infrared sensitive organic light emitting diode,” Sci. Rep., 4, 5946 (2014).
    [18] H. Yu, Y Cheng, M. Li, S.W. Tsang, F. So, “Sub-band gap turn-on near-infrared- to-visible up-conversion device enabled by an organic−inorganic hybrid perov- skite photovoltaic absorber,” ACS Appl.Mater. interfaces, 10, 15920 (2018).
    [19] D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad and S. M. Alshehri , “Near infrared to visible light organic up-conversion devices with photon-to-photon conver- sion efficiency approaching 30%,” Mater. Horiz., 5, 874 (2018).
    [20] H. Tachibana, N. Aizawa, Y Hidaka and T. Yasuda, “Tunable full-color electro- luminescence from all-organic optical upconversion devices by near-infrared sensing,” ACS Photonics, 4, 223 (2017).
    [21] R. D. J. Vuuren, A. Armin, A. K. Pandey, P. L. Burn and P. Meredith, “Organic photodiodes : the future of full color detection and image sensing,” Adv. Mater., 28, 4766 (2016).
    [22] R. Shinar and J. Shinar, “Organic Electronics in Sensors and Biotechnology,” McGraw-Hill., Ch.6 (2009).
    [23] X. Hu, K. Wang, C. Liu, T. Meng, Y. Dong, S. Liu, F. Huang, X. Gong and Y. Cao, “High-detectivity inverted near-infrared polymer photodetectors using cross- linkable conjugated polyfluorene as an electron extraction layer,” J. Phys. Chem.C, 2, 9592 (2014).
    [24] L. Zhang, T. Yang, L. Shen, Y. Fang, L. Dang, N. Zhou, X. Guo, Z. Hong, Y.
    Yang, H. Wu, J. Huang and Y. Liang, “Toward highly sensitive polymer photo-
    detectors by molecular engineering,” Adv. Mater., 27, 6496 (2015).
    [25] L. Li, Y. Huang, J. Peng, Y. Cao and X. Peng, “High response organic near-infra- red photodetectors based on a porphyrin small molecule,” J. Phys. Chem. C, 2,
    1372 (2014).
    [26] X.Wang,H.Li,Z.Su,F.Fang,G.Zhang,J.Wang,B.Chu,X.Fang,Z.Wei,
    B. Li , W. Li , “Efficient organic near-infrared photodetectors based on lead
    phthalocyanine/C60 heterojunction,” Org Electron., 15, 2367 (2014).
    [27] H. Zhang, S. Jenatsch, J. D. Jonghe, F. Nu ̈esch, R. Steim, A. C. Veron and R. Hany, “Transparent organic photodetector using a near-infrared absorbing cyanine
    dye,” Sci. Rep., 5, 9439 (2015).
    [28] Z. Su, F. Hou, X. Wang, Y. Gao, F. Jin, G. Zhang, Y. Li, L. Zhang, B. Chu and
    W. Li , “High-performance organic small-molecule panchromatic photodetec-
    tors,” ACS Appl. Mater. Interfaces, 7, 2529 (2015).
    [29] M.S. Choi, S. Chae, H.J. Kim and J.J. Kim, “Control of crystallinity in PbPc:C60
    blend film and application for inverted near-infrared organic photodetector,” ACS
    Appl. Mater. Interfaces, 10, 25614 (2018).
    [30] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitro-
    fluorenone and poly-n-vinylcarbazole,” J. Appl. Phys., 43, 5033 (1972).
    [31] I. G. Hill, A. Kahn, Z. G. Soos and J. Pascal, R.A., “Charge-separation energy in
    films of π-conjugated organic molecules,” Chem. Phys. Lett., 327, 181 (2000).
    [32] R. M. Glaeser and R. S. Berry, “Mobilities of electrons and holes in organic mo- lecular solids comparison of band and hopping models,” J. Chem. Phys., 44, 3797
    (1966).
    [33] M. Knupfer, “Exciton binding energies in organic semiconductors,” Appl. Phys.,
    77, 623 (2003).
    [34] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M.Glatthaar, T.
    Meyer and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,” Sol.
    Energy Mater. Sol. Cells, 91, 379 (2007).
    [35] B. Leckner, “The spectral distribution of solar radiation at the earth's surface-ele-
    ments of a model,” Sol. Energy, 20, 143 (1978).
    [36] P. Peumans, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-
    film photodetectors and solar cells,” J. Appl. Phys., 93, 3693 (2003).
    [37] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater., 19,
    1551 (2007).
    [38] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I.
    McCulloch, J. Nelson, D. D. C. Bradley and J. R. Durrant, “Charge carrier for- mation in polythiophene/fullerene blend films studied by transient absorption spectroscopy,” J. Am. Chem. Soc., 130, 3030 (2008).
    [39] J. L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, “Molecular understanding of organic solar cells: the challenges,” Accounts Chem. Res., 42,1691 (2009).
    [40] M. Pope, H. P. Kallmann and P. Magnante, “Electroluminescence in organic crys-
    tals,” J. Chem. Phys., 38, 2042 (1963).
    [41] C. H. Chen, C. W. Tang, J. Shi and K. P. Klubek, “Recent developments in the
    synthesis of red dopants for Alq3 hosted electroluminescence,” Thin Solid Films,
    363, 327 (2000).
    [42] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson
    and S. R. Forrest, “Highly efficient phosphorescent emission from organic elec-
    troluminescent devices,” Nature, 395, 151 (1998).
    [43] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest,
    “Management of singlet and triplet excitons for efficient white organic light-emit-
    ting devices,” Nature, 440, 908 (2006).
    [44] Y.S.Park,S.Lee,K.H.Kim,S.Y.Kim,J.H.LeeandJ.J.Kim,“Exciplex-
    forming co-host for organic light-emitting diodes with ultimate efficiency,”Adv.
    Funct. Mater., 23, 4914 (2013).
    [45] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, “In vivo cancer
    targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol., 22,
    969 (2004).
    [46] R. K. Miyake, H. D. Zeman, F. H. Duarte, R. Kikuchi, E. Ramacciotti, G. Lovhoi-
    den and C. Vrancken, “Vein imaging: a new method of near infrared imaging, where a processed image is projected onto the skin for the enhancement of vein treatment,” Dermatol. Surg., 32, 1031 (2006).
    [47] J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol., 7, 626 (2003).
    [48] V. Ntziachristos, C. Bremer and R. Weissleder, “Fluorescence imaging with near-
    infrared light: new technological advances that enable in vivo molecular imaging,”
    Eur. Radiol., 13, 195 (2003).
    [49] N. J. Cuper, J. H. G. Klaessens, J. E. N. Jaspers, R. de Roode, H. J. Noordmans,
    J. C. de Graaff and R. M. Verdaasdonk, “The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood with- drawal in children,” Med. Eng. Phys., 35, 433 (2013).
    [50] P. E. Keivanidis, S. H. Khong, P. K. H. Ho, N. C. Greenham, R. H. Friend, “All solution based device engineering of multilayer polymeric photodiodes: minimiz- ing dark current,” Appl. Phys. Lett., 94, 173303 (2009).
    [51] K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak and J.L. Lee, “Optical properties of WO3/Ag/WO3 multilayer as transparent cath- ode in top-emitting organic light emitting diodes,” J. Phys. Chem. C, 115, 3453 (2011).
    [52] W. Yu, L. Shen, F. Meng, Y. Long, S. Ruan, W. Chen, “Effects of the optical microcavity on the performance of ITO-free polymer solar cells with WO3/Ag/WO3 transparent electrode,” Sol. Energ. Mat. Sol. Cells, 100, 226 (2012).
    [53] N. Zhang, Y. Hu, X. Liu, “Transparent organic thin film transistors with WO3 /Ag/WO3 source-drain electrodes fabricated by thermal evaporation,” Appl. Phys. Lett., 103, 033301 (2013).
    [54] H. Lia, Y. Lv, X. Zhang, X. Wang, X. Liu, “High-performance ITO-free electro- chromic films based on bi-functional stacked WO3/Ag/WO3 structures,” Sol. En- erg. Mat. Sol. Cells, 136, 86 (2015).
    [55] Z. Qi, J. Cao, L. Ding, J. Wang, “Transparent and transferrable organic optoelec- tronic devices based on WO3/Ag/WO3 electrodes,” Appl. Phys. Lett., 106, 053304 (2015).
    [56] Y. Wang, B. He, H. Wang, J. Xu, T. Ta, W. Li, Q. Wang, S. Yang, Y. Tang, B. Zou, “Transparent WO3/Ag/WO3 electrode for flexible organic solar cells,” Mater. Lett., 188, 107 (2017).
    [57] S.W. Liu, T. H. Su, P.C. Chang, T. H. Yeh, Y. Z. Li, L. J. Huang, Y. H. Chen, C. F. Lin, “ITO-free efficient and inverted phosphorescent organic light-emitting di- odes using a WO3/Ag/WO3 multilayer electrode,” Org. Electron., 31, 240 (2016).
    [58] M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet and L. Hirsch, “Long-term stable organic photodetectors with ultra low dark currents for high detectivity applica- tions,” Sci. Rep., 6, 39201 (2016).

    無法下載圖示 全文公開日期 2024/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE