簡易檢索 / 詳目顯示

研究生: 王妤榛
Yu-Jhen Wang
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽核殼型顆粒、氧化石墨烯及熱脫層氧化石墨烯及反應型微膠顆粒對乙烯基酯樹脂之體積收縮、機械性質、微觀型態結構及X光散射特性之影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and effects of nano-scale and submicron-scale core-shell rubber additives, inorganic silica nanoparticles, GO, TRGO, and reactive microgel particle on the volume shrinkage, mechanical properties, cured sample morphology, and X-ray scattering characteristics for vinyl ester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Yen Chiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 243
中文關鍵詞: 氧化石墨烯熱還原氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝之熱脫層氧化石墨烯聚合固化接枝效率
外文關鍵詞: graphene oxide, silane-grafted graphene oxide, thermally reduced graphene oxide, silane-grafted thermally reduced graphene oxide, curing, grafting efficiency
相關次數: 點閱:406下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討添加氧化石墨烯(GO)、低接枝密度之矽烷接枝氧化石墨烯(LD-sg-GO)、高接枝密度之矽烷接枝氧化石墨烯(HD-sg-GO)、熱脫層氧化石墨烯(TRGO)以及矽烷接枝之熱脫層氧化石墨烯(sg-TRGO)等數種特用添加劑的合成及其對苯乙烯(St)/乙烯基酯(VER)/特用添加劑三成份系統於120 oC恆溫固化之微觀型態結構、體積收縮特性及機械性質的影響。
    熱脫層氧化石墨烯(TRGO)是將氧化石墨烯(GO)置於1050 oC的高溫爐中30 sec合成而得;後者,則是將平均粒徑為2至15微米的天然石墨粉以改良的Hummers法製得。矽烷接枝氧化石墨烯(sg-GO)係以帶有壓克力不飽和C=C雙鍵的矽烷偶合劑,即甲基丙烯酰氧丙基三甲氧基矽烷(MPS),做為表面改質劑,在GO/MPS/溶劑三者的重量比於1:5:94下,並在不同反應溫度(60 oC-100 oC)及時間(1.5 hr-48 hr)、不同使用溶劑(如甲苯、乙醇以及二甲基甲醯胺)及不同反應次數下(一或三次反應,以進行GO之表面處理),對氧化石墨烯(GO)進行表面處理而得。兩種矽烷接枝氧化石墨烯,包刮低接枝密度(LD-sg-GO)及高接枝密度(HD-sg-GO)。吾人以傅立葉轉換紅外光分析儀(FTIR)的定量測得之接枝密度分別為112 mmole MPS/100 g GO及492 mmole MPS/100 g GO。至於矽烷接枝熱脫層氧化石墨烯(sg-TRGO),吾人以FTIR所測得之接枝密度為83 mmole MPS/ 100 g TRGO。
    視GO的種類及添加量(GO及sg-GO之添加量為0.5 wt%-5.0 wt%,而TRGO及sg-TRGO之添加劑為0.5 wt%-1.0 wt%),添加GO於VER樹脂中,其聚合固化後之體積收縮會有不同程度的降低效果。通常,添加GO量愈大,聚合固化後之體積收縮亦愈小。在本研究的四種不同添加劑中,包括GO、sg-GO、TRGO以及sg-TRGO,在固定的添加量下,以sg-TRGO及TRGO為添加劑的抗體積收縮效果最好,sg-GO系次之,GO系則是最差。5.0 wt% GO系及0.5 wt% sg-GO系,其抗體積收縮的表現相近,而0.5 wt% sg-TRGO系及0.5 wt% TRGO系,其抗體積收縮效果較0.5 wt% sg-GO系為佳。本研究中,吾人發現添加0.5 wt% TRGO、0.5 wt% sg-TRGO或1.0 wt% sg-TRGO這三個系統,其在St/VER(n=2)/添加劑三成份係於120 oC聚合固化之體積收縮控制的效果最佳。而這三個系統中,以添加1.0 wt% sg-TRGO三成份系的機械性質表現最佳,其楊氏模數與純VER(n=2)樹脂系相較,增加10%,抗張強度僅減小5%,而耐衝擊強度大增100%。


    The effects of graphene oxide (GO), low grafting density silane-grafted graphene oxide (LD-sg-GO), high grafting density silane-grafted graphene oxide (HD-sg-GO), thermally reduced graphene oxide (TRGO), and silane-grafted thermally reduced graphene oxide (sg-TRGO) as special addities on the cured sample morphologies, volume shrinkage characteristics and mechanical properties for low-shrink vinyl ester resins (VER) cured at 120 oC were investigated.
    The TRGO was produced by placing the GO in a high-temperature furnace kept at 1050 oC for 30 s, which was synthesized from natural graphites with average particle size of 2 to 15 μm by a modified Hummers method. The sg-GO was synthesized by using the silane coupling agent bearing acrylic C=C bonds, namely, γ-methacryloxy propyl trimethoxy silane (MPS), as a surface modifier for the surface treatment of GO at varied reaction temperatures (60 oC-100 oC) and reaction times (1.5 hr-48 hr), with different times of reaction for surface treatment between GO and MPS (n=1 or 3), using different reagents, such as toluene, ethanol and dimethyl formamide, as the solvent and with a fixed weight ratio of GO/MPS/solvent at 1:5:94, where the grafting density was 112 mmole MPS/100 g GO and 492 mmole MPS/100 g GO for low grafting density of silane-grafted GO (LD-sg-GO) and high grafting density of silane-grafted GO (HD-sg-GO), respectively, as measured by FTIR. As for the silane-grafted TRGO (sg-TRGO), the grafting density was 83 mmole MPS/100 g TRGO, as measured by FTIR.
    Depending on the type of GO and their contents (0.5 wt% to 5.0 wt% for GO and sg-GO, and 0.5 wt% to 1.0 wt% for TRGO and sg-TRGO) added, the GO could lead to a reduction of volume shrinkage after the cure to differing degrees. In general, a higher content of GO may result in a lower volume shrinkage after cured. Among the four additives studied in this work, namely, GO, sg-GO, TRGO, and sg-TRGO at a fixed content of additive, sg-TRGO and TRGO would result in the best volume shrinkage control, followed by sg-GO and GO. The performance of volume shrinkage control was quite close to each other for the 5.0 wt% GO and the 0.5 wt% sg-GO systems, whereas the 0.5 wt% sg-TRGO system and 0.5 wt% TRGO system could lead to a better volume shrinkage control than the 0.5 wt% sg-GO system. In this work, it has been found that adding 0.5 wt% of TRGO, 0.5 wt% of sg-TRGO or 1.0 wt% sg-TRGO as the LPA for the St/VER(n=2)/additive ternary system during the cure at 120 oC is the best recipe for a good volume shrinkage control, which exhibited a fractional volume shrinkage of 2.6%, about one half of that for the neat VER cured system. However, the 1.0 wt% sg-TRGO ternary system would possess the best mechanical properties, exhibiting a slight increase of 10% in Young’s modulus, and a slight decrease of 5% in tensile strength, and a 100% increase in impact strength, when compared with that of neat VER(n=2) cured system.

    目錄 第1章 緒論 1 1.1 前言 1 1.2 研究範疇 3 第2章 文獻回顧 4 2.1 乙烯基酯樹脂 (VINYL ESTER RESIN, VER) 4 2.2 不飽和聚酯 (UNSATURATED POLYESTER, UP) 5 2.3 抗體積收縮劑 (LOW-PROFILE ADDITIVES, LPA) 6 2.4 甲基丙烯酰氧丙基三甲氧基矽烷(MPS) 8 2.5 自由基聚合反應 10 2.6 不飽和聚酯(UP)樹脂和苯乙烯(ST)之交聯共聚合反應 13 2.7 不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 15 2.8 不飽和聚酯(UP)樹脂之抗收縮補償機制 17 2.9 抗收縮劑對UP樹脂固化後體積收縮影響之研究 19 2.10 不飽和聚酯(UP)硬化後的機械性質研究 21 2.11 石墨烯高分子奈米複合材 23 第3章 實驗 37 3.1 實驗材料 37 3.1.1 乙烯基酯樹脂 37 3.1.2 實驗藥品 40 3.2 實驗儀器 44 3.3 實驗流程 47 3.3.1 製備氧化石墨烯 (GO) 47 3.3.2 改變使用溶劑,反應溫度及反應時間的操作條件,以製備不同接枝密度矽烷偶合劑改質之氧化石墨烯(sg-GO) 47 3.3.3 製備低接枝密度矽烷偶合劑改質之氧化石墨 (LD-sg-GO) 51 3.3.4 製備高接枝密度矽烷偶合劑改質之氧化石墨 (HD-sg-GO) 51 3.3.5 製備熱脫層氧化石墨烯 (TRGO) 52 3.3.6 製備矽烷偶合劑改質之熱脫層氧化石墨烯 (sg-TRGO) 52 3.3.7 製備Neat St/VER(n=2) 溶液與固化試片 53 3.3.8 製備St/VER(n=2)/ additive之三成份溶液與固化試片 55 3.3.9 體積變化量測試-密度法 56 3.3.10 廣角X-ray散射儀 (WAXS) 57 3.3.11 傅立葉紅外線光譜儀 (FTIR)之定性分析 58 3.3.12 有機化改質之GO (或TRGO) 利用傅立葉紅外線光譜儀之定量分析 58 3.3.12.1 MPS型Silane 58 3.3.12.2氧化石墨烯 (GO) 59 3.3.12.3熱還原氧化石墨烯 (TRGO) 59 3.3.12.4未反應之Silane /GO (或TRGO)混合物 60 3.3.12.5 Silane-grafted GO (或TRGO) 60 3.3.13 熱重分析儀 (TGA) 61 3.3.14 掃描式電子顯微鏡 (SEM) 61 3.3.15 穿透式電子顯微鏡 (TEM) 62 3.3.16 拉伸測試(Tensile Tester) 63 3.3.17 耐衝擊測試 64 3.3.18 動態機械熱分析儀 (DMA) 64 第4章 結果與討論 65 4.1 微結構分析 65 4.1.1 廣角X-ray散射儀 (WAXS) 65 4.1.2 傅立葉紅外線光譜儀 (FTIR)之定性分析 68 4.1.3 有機化改質之GO利用傅立葉紅外線光譜儀 (FTIR)之定量分析 71 4.1.4 有機化改質之TRGO利用傅立葉紅外線光譜儀 (FTIR)之定量分析 89 4.2 熱性質分析 105 4.2.1 熱重分析儀 105 4.3 微觀型態結構分析 107 4.3.1 掃描式電子顯微鏡 (SEM) 107 4.3.1.1 St/ VER(n=2)/ GO三成份系統 107 4.3.1.2 St/ VER(n=2)/ LD-sg-GO三成份系統 114 4.3.1.3 St/ VER(n=2)/ HD-sg-GO三成份系統 120 4.3.1.4 St/ VER(n=2)/ TRGO三成份系統 126 4.3.1.5 St/ VER(n=2)/ sg-TRGO三成份系統 129 4.3.2 穿透式電子顯微鏡 (TEM) 133 4.3.2.1 St/ VER(n=2)/ GO三成份系統 133 4.3.2.2 St/ VER(n=2)/ LD-sg-GO三成份系統 140 4.3.2.3 ST/ VER(n=2)/ HD-sg-GO三成份系統 145 4.3.2.4 St/ VER(n=2)/ TRGO三成份系統 151 4.3.2.5 ST/ VER(n=2)/ sg-TRGO三成份系統 154 4.4 體積收縮特性 158 4.4.1 St/ VER(n=2) 雙成分系統 158 4.4.2 St/ VER(n=2)/ GO三成份系統 160 4.4.3 St/ VER(n=2)/ LD-sg-GO三成份系統 162 4.4.4 St/ VER(n=2)/ HD-sg-GO三成份系統 164 4.4.5 St/ VER(n=2)/ TRGO三成份系統 166 4.4.6 St/ VER(n=2)/ sg-TRGO三成份系統 168 4.5 機械性質分析 170 4.5.1 耐衝擊測試 170 4.5.1.1 St/ VER(n=2) 雙成分系統 170 4.5.1.2 St/ VER(n=2)/ GO 三成分系統 172 4.5.1.3 St/ VER(n=2)/ LD-sg-GO 三成分系統 174 4.5.1.4 St/ VER(n=2)/ HD-sg-GO 三成分系統 176 4.5.1.5 St/ VER(n=2)/ TRGO 三成分系統 178 4.5.1.6 St/ VER(n=2)/ sg-TRGO 三成分系統 180 4.5.2 拉力測試 182 4.5.2.1 St/ VER(n=2) 雙成分系統 182 4.5.2.2 St/ VER(n=2)/ GO 三成分系統 187 4.5.2.3 St/ VER(n=2)/ LD-sg-GO三成份系統 192 4.5.2.4 St/ VER(n=2)/ HD-sg-GO三成份系統 197 4.5.2.5 St/ VER(n=2)/ TRGO三成份系統 202 4.5.2.6 ST/ VER(n=2)/ sg-TRGO三成份系統 207 第5章 結論 212 第6章 未來工作 215 第7章 參考文獻 216

    [1] A. Almagableh, P. R.Mantena, A. Alostaz, W. Liu, L. T. Drzal, eXPRESS Polym. Lett. 2009, 11, 724-723.
    [2] Z. Guo, K. Lei, Y. Li, W. Liu, H. W. Ng, P. Sergy, H. Thomas, Compos. Sci. Technol. 2008, 68, 1513-1520.
    [3] L. Liao, X. Wang, P. Fang, M. Kim, C. Pan, Appl. Mater. & Interfaces. 2011, 3 534-538.
    [4] S. DUA, R. L. McCULLOUGH, G. R. PALMESE, Polym. Compos. 1999, 20 379-391.
    [5] J. Changwoon, S. Nouranian, E. L. Thomas, S. R. Gwaltney, H. Toghiani, C. H. Pittman, Carbon. 2012, 50, 748-760.
    [6] W. Posthumus, P.C.M.M. Magusin, J.C.M. Brokken-Zijp, A.H.A. Tinnemans, R. van der Linde, J. Colloid and Interface Sci. 2004, 269, 109-116.
    [7] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982.
    [8] 鍾宛倫, 碩士論文, 台灣科技大學, 2014.
    [9] W. H. Liao, H. W. Tien, S.T. Hsiao, S. M. Li, Y. S. Wang, Y. L. Huang, S. Y. Yang, C. C. M. Ma, Y. F. Wu, Appl. Mater. & Interfaces. 2013, 5, 3975-3982.
    [10] R. E. Young, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976.
    [11] M.E. Kelly, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P.370.
    [12] 黃智偉, 碩士論文, 台灣科技大學, 2014
    [13] F. Fekete, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P.28.
    [14] R.B. Burn, “Polyester Molding Compounds”, Marcel Dekker, Inc, New York, 1982.
    [15] E. J. Bartkus, C. H Kroekel, Appl. Polym. Symp. 1970, 15, 113.
    [16] K. E. Atkins, in “Sheet Molding Compound :Science and Technology” Ed., H.G. Kia, Hanser Publishers, 1993, Ch4.
    [17] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1974, 18, 2763.
    [18] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1975, 19 3045.
    [19] Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 305.
    [20] Y. J. Huang, J. C. Horng, Polym. 1998, 39, 3683.
    [21] Y. J. Huang, L. D. Chen, Polym. 1998, 39, 7049.
    [22] L. Suspene, D. Fourquier, Y. S. Yang, Polym. 1991, 32, 1593.
    [23] Y. J. Huang, C. M. Liang, Polym. 1996, 37, 401.
    [24] L. J. Lee, W. Li, K. H. Hsu, Polym. 2000, 41, 711.
    [25] C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 636.
    [26] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3336.
    [27] J. P. Dong , J. H. Lee, D. H. Lai, Y. J. Huang, Appl. Polym. Sci. 2005, 98, 264.
    [28] 盧天智, 碩士論文,台灣科技大學, 1991
    [29] H. R. Allcock, F. W. Lampe, “Contemporary Polymer Chemistry”, 2nd Ed.,
    Prentice Hall, Englewood Cliffs, (1990), P.50.
    [30] Y. S. Yang, L. J. Lee, Polym. 1988, 29, 1793.
    [31] K. Horie, I. Mita, H. Kambe, J. Polym. Sci. PartA-1:Polym. Chem. 1969, 7 2561.
    [32] 江文慶, 碩士論文,台灣科技大學, 1996.
    [33] Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 323.
    [34] Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 305.
    [35] Y. J. Huang, C.C. Su, Polym. 1994, 35, 2397.
    [36] C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 786.
    [37] T. Mitani, H. Shiraishi, K. Honda, G.E. Owen, 44th Annual Conference
    Composite Institute, SPI, Session 12-F, 1989.
    [38] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 2111.
    [39] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 1925.
    [40] J. P. Dong, J. G. Huang, F. H. Lee, J. W. Roan, Y. J. Huang, J. Appl. Polym. Sci. 2004, 91, 3388.
    [41] Y. J. Huang, S. C. Lee, J. P. Dong, J. Appl. Polym. Sci. 2000, 78, 558.
    [42] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3347.
    [43] H. Kim, A. A. Abdala, C. W. Macosko, Macromol. 2010, 43, 6515-6530.
    [44] Y. J. Wan, L. X. Gong, L. C. Tang, L. B. Wu, J. B. Jiang, Composites: Part A. 2014, 64, 79-89.
    [45] Y. J. Wan, L. C. Tang, L. X. Gong, Y. D. Yan, Y. B. Li, L. B. Wu, J. X. Jiang, G. Q. Lai, Carbon. 2014, 69, 467-480.
    [46] C. Botas, P. A´lvarez, C. Blanco, R. Santamarı´a, M. Granda, M. Gutie´rrez, F. R. Reinoso, R. Mene´ndez, Carbon. 2013, 52, 476-485.
    [47] H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441-3450.
    [48] J. Zang, Y. J. Wan, Li. Zhao, L. C. Tang, Macromol. Mater. Eng. 2015, 300, 737-749.
    [49] R. Thomann, R. Mülhaupt, A. K. Appel, Polym. 2012, 53, 4931-4939.
    [50] G. H. Yeoh, X. Wang, W. Xing, L. Song, B. Yu, Y. Hu, Reactive & Functional Polym. 2013, 73, 854-858.
    [51] A. Chaturvedi, A. Tiwari, A. Tiwari, Adv. Mat. Lett. 2013, 4, 656-661.
    [52] O. Eksik, S. F. Bartolucci, T. Gupta, H. Fard, T. B. Tasciuc, N. Koratkar, Carbon. 2016, 101, 239-244.
    [53] JR. Hummers, R. E. Offeman, J. Americ. Chem. Soc. 1958, 80, 1339.
    [54] C. H. Schniepp, J. L. Li, M. J. McAllister, H. Sai, H. A. Margarita, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B. 2006, 17, 8535.
    [55] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H,. Zhao, Langmuir, 2009, 25, 118.
    [56] F. Beckert, C. Friedrich, R. Thomann, R. Mulhaupt, Macromol. 2012, 45, 7083.
    [57] Y. J. Wan, L. X. Gong, L. C. Tang, L. B. Wu, J. B. Jiang, Composites: Part A. 2014, 64, 79-89.
    [58] J. Michael, J. L. McAllister, H. A. Douglas, C. Hannes, Chem. Mater. 2007, 19 4396-4400.
    [59] R.-M. Hossein, H.-A. Vahid, K. Khezrollah, Z. Elnaz, S. K. Mehdi, J. Polym. Res. 2014, 16, 333.
    [60] C. Hontoria-Lucas, A. Lopez-Peinado, D. Lopez-Gonzalez, M. L. Rojas-Cervantes, R. M. Martin-Ara nda, Carbon. 1995, 33, 1585-1592.
    [61] H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441-3450.

    QR CODE