簡易檢索 / 詳目顯示

研究生: 許志榮
Chih-jung Shu
論文名稱: 可控直流鏈電壓之永磁同步電動機驅動系統研製
Development of Permanent-Magnet Synchronous Motor Drives With Adjustable DC-link Voltage
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
吳瑞南
Ruay-Nan Wu
王順源
Shun-yuan Wang
陳慕平
Mu-ping Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: 直流鏈電壓低轉速高轉矩電動機設計
外文關鍵詞: dc-link voltage, low-speed and high-torque, moto
相關次數: 點閱:547下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在設計、分析及研製應用於低轉速高轉矩場合之可控直流鏈電壓的三相永磁式同步電動機驅動系統。電動機方面,採用有限元素電磁場解析套裝軟體Flux2D分析永磁式同步電動機之磁場分布、感應動電勢及電路參數,並以此訂定電動機製作規格及尺寸。本文已建立永磁式同步電動機於轉子同步旋轉座標系統之交、直軸動態模型,配合直接負載法量測交、直軸電動機參數,以完成轉子磁場導向之轉速及電流閉迴路控制。在系統整合方面,直流鏈電壓的建立係採用雙開關昇/降壓交流-直流功率轉換器,作為前級架構。本文所設計三相永磁式同步電動機之感應電動勢峰值與轉速呈線性關係,故提出轉速與直流鏈電壓整合控制,電動機於低轉速時,提供較低之直流鏈電壓;於高轉速運轉時,提供高直流鏈電壓,同時配合估測電動機負載進行功率補償控制。如此,於電動機低速運轉,電動機側電流諧波較低,且直流鏈電壓不受負載及市電側電壓變動影響,維持轉矩平穩。
本文採用數位信號處理器TMS320LF2407A為核心,三相永磁式同步電動機之轉速、電流閉迴路及系統整合控制,皆由軟體模組程式實現。本文已完成22極低轉速高轉矩之永磁式同步電動機製作,其感應電動勢峰值與轉速呈線性關係,且感應電動勢電壓諧波失真率約為2.06 %,與分析結果相接近,驗證軟體之準確性。本文已完成200 W之永磁式同步電動機驅動器,其直流鏈電壓隨電動機轉速線性調整,藉由實測結果驗證本文控制架構之可行性。


This thesis focuses on the design, analysis and implementation of dc-link voltage-controlled three-phase permanent-magnet synchronous motor drives for low-speed and high-torque applications. The characteristics such as the magnetic field distribution, electromotive-force waveform, and circuit parameters of the proposed motor are analyzed by finite element electromagnetic-field analysis software package, Flux2D. The quadrature and direct-axis dynamic models of the motor in rotor frame are derived to facilitate the speed and current closed-loop control using rotor flux orientation as well as the measurement of motor parameters. The double switch buck/boost ac-dc power converter is designed to build up the dc-link voltage. The integration of the speed and dc-link voltage control is proposed to fully utilize the linear relationship between the peak electromotive-force and speed. Specifically, lower dc-link voltage is applied at low speed, whereas higher dc-link voltage is provided at high speed. Meanwhile, motor load is estimate for power-compensation control. Thus, the motor not only has the feature of lower current harmonics at low-speed, but also maintains stable dc-link voltage and torque even under load and utility voltage variations.
In this thesis, the digital signal processor TMS320LF2407A is used for the speed and current closed-loop control as well as the system integration of the three-phase permanent-magnet synchronous motor. The implementation of the multi-pole, low-speed, and high-torque permanent-magnet synchronous motor with the linear relationship between the peak electromotive-force and speed are also given. The electromotive-force voltage harmonic distortion measured is 2.06 %, which agrees with the analytic results and thus validate the software accuracy. Moreover, the 200 W prototype of the permanent-magnet synchronous motor drive whose dc-link voltage follows the speed linearly is also verified. Experimental results justify the feasibility of the proposed system.

中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號說明 VII 圖表索引 XI 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 3 1.2.1 永磁式同步電動機 3 1.2.2 功率轉換器分析 4 1.3 系統架構與本文貢獻 5 1.4 本文大綱 6 第二章 三相永磁式同步電動機之設計與參數量測 8 2.1 前言 8 2.2 三相24槽22極內轉型永磁式同步電動機之設計 9 2.2.1 定子與轉子幾何結構主要尺寸的選擇 9 2.2.2 永磁材料的性能和選用 13 2.2.3 永磁式同步電動機之繞組接線 15 2.3 三相24槽22極內轉型永磁式同步電動機之分析 18 2.3.1 磁路特性分析 19 2.3.2 感應電動勢分析與實測 26 2.4 永磁式同步電動機數學模型之建立 29 2.4.1 永磁式同步電動機之交、直軸動態模型 29 2.4.2 永磁式同步電動機之穩態性能 32 2.5 永磁式同步電動機之參數量測 33 2.5.1 交、直軸電感之量測 36 2.5.2 永磁式同步電動機參數分析與性能評估 36 2.6 結語 38 第三章 昇/降壓型交流-直流功率轉換器分析與控制39 3.1 前言 39 3.2 交流-直流功率轉換器之比較 39 3.2.1 單相全橋型二極體整流器 40 3.2.2 單開關昇壓型交流-直流功率轉換器 40 3.2.3 雙開關昇/降壓型交流-直流功率轉換器 42 3.3 昇壓之交流-直流功率轉換器之分析與控制 44 3.3.1 昇壓模式之交流-直流功率轉換器 44 3.3.2 昇壓模式交流-直流功率轉換器之控制 46 3.4 降壓之交流-直流功率轉換器分析與控制 50 3.4.1 降壓模式之交流-直流功率轉換器 50 3.4.2 降壓模式交流-直流功率轉換器之控制 52 3.5 昇/降壓型交流-直流功率轉換器模擬及實測 55 3.6 結語 61 第四章 永磁同式步電動機控制與系統整合 62 4.1 前言 62 4.2 永磁式同步電動機電流控制 62 4.3 永磁式同步電動機轉速控制 64 4.4 系統整合控制 65 4.4.1 弦式脈波寬度調變與諧波之分析 65 4.4.2 直流鏈電壓與轉速之整合控制 68 4.4.3 昇/降壓交流-直流轉換器之功率補償控制 69 4.5 結語 71 第五章 實作與測試 72 5.1 前言 72 5.2 硬體電路                 72 5.2.1 數位信號處理器之介面電路        73 5.2.2 直流鏈電壓回授電路與過電壓保護電路   75 5.2.3 電流回授電路與過電流保護電路      76 5.2.4 市電峰值電壓回授電路與零點偵測電路   77 5.2.5 智慧型功率模組與閘極驅動電路      78 5.2.6 電磁旋轉編碼器             79 5.3 軟體規劃                 81 5.3.1 主程式流程規劃             81 5.3.2 系統模組執行時間規劃          84 5.3.3 昇/降壓交流-直流功率轉換器程式規劃   84 5.3.4 永磁式同步電動機轉速及電流閉迴路程式規劃86 5.4 實測結果                 88 5.5 結語                   100 第六章 結論與建議               101 6.1 結論                   101 6.2 建議                   101 參考文獻                   103 附 錄 A                    108 作者簡介                   109

[1]Q. Ronghai and T. A. Lipo, “Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine,” IEEE Transactions on Industry Applications, vol. 40, pp.121-127, 2004.
[2]Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless dc motors. IV. magnetic field on load”, IEEE Transactions on Magnetics, vol. 29, pp.152-158, 1993.
[3]J. Wang, G. W. Jewell and D. Howe, “Design optimisation and comparison of tubular permanent magnet machine topologies,” IEE Proceedings of Electric Power Applications, vol. 148, pp.456-464, 2001.
[4]唐任遠,現代永磁電機理論與設計,機械工業出版社,1997。
[5]A. Masmoudi, A. Njeh, A. Mansouri, H. Trabelsi and A. Elantably, “Optimizing the overlap between the stator teeth of a claw pole transverse-flux permanent-magnet machine,” IEEE Transactions on Magnetics, vol. 40, pp.1573-1578, 2004.
[6]T. Wen-Bin and C. Ting-Yu, “Analysis of flux leakage in a brushless permanent magnet motor with embedded magnets,” IEEE Transactions on Magnetics, vol. 35, pp.543-547, 1999.
[7]Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines,” IEEE Transactions on Energy Conversion, vol. 15, pp.407-412, 2000.
[8]Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors. III. effect of stator slotting,” IEEE Transactions on Magnetics, vol. 29, pp.143 -151, 1993.
[9]Z. J. Liu, C. Bi, H.C. Tan and T. S. Low, “A combined numerical and analytical approach for magnetic field analysis of permanent magnet machines,” IEEE Transactions on Magnetics, pp.1372-1375, 1995.
[10]A. Masmoudi and A. Elantably, “A simple assessment of the cogging torque in a transverse flux permanent magnet machine,” IEEE International Electric Machines and Drives Conference, pp.754-759, 2001.
[11]Y. Honda, T. Nakamura, T. Higaki and Y. Takeda, “Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles,” Thirty-Second IAS Annual Meeting Conference, vol. 1, pp.75-82, 1997.
[12]C. C. Hwang and Y.H. Cho, “Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors,” IEEE Transactions on Magnetics, vol. 37, pp.3021 -3024, 2001.
[13]W. B. Tsai and T. Y. Chang , “Analysis of Flux Leakage in a Brushless Permanent Magnet Motor with Embedded Magnets,” IEEE Transactions on Magnetics, vol. 35, pp. 543-547,
[14]S. D. Sudhoff, K. A. Corzine and H. J. Hegner “A flux-weakening strategy for current-regulated surface-mounted permanent-magnet machine drives,” IEEE Transactions on Energy Conversion, vol. 10, pp.431-437, 1995.
[15]B. J. Chalmers, “Performance of interior-type permanent-magnet alternator,” IEE Proceedings Electric Power Applications, vol. 141, pp.186-190, 1994.
[16]H. Kim and R. D. Lorenz, “Improved current regulators for IPM machine drives using on-line parameter estimation,” Proceedings of the 2003 Industry Applications Annual Meetings, pp.86-91, 2003.
[17]M. A. Jabbar, J. Dong and Z. Liu, “Determination of machine parameters for internal permanent magnet synchronous motors,” Second International Conference on Power Electronics, Machines and Drives, vol. 2,pp.805-810, 2004.
[18]A. M. El-Serafi and N. C. Kar, “Methods for determining the q-axis saturation characteristics of salient-pole synchronous machines from the measured d-axis characteristics,” IEEE Transactions on Energy Conversion, vol. 18, pp.80-86, 2003.
[19]B. Stumberger, B. Kreca and B. Hribernik, “Determination of parameters of synchronous motor with permanent magnets from measurement of load conditions,” IEEE Transactions on Energy Conversion, vol. 14, pp.141-1416 ,1999.
[20]F. Blaschke, “The principle of field orientation as applied to the new transvector closed loop control system for rotating field machines,” Siemens Review, vol. 34, pp.217-220, 1972.
[21]J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” IEEE 35th Power Electronics Specialists Conference, vol. 5, pp.3397-3402, 2004.
[22]R. Monajemy and R. Krishnan, “Control and dynamics of constant power loss based operation of permanent-magnet synchronous motor drive system,” IEEE Transactions on Industry Applications, vol. 48, pp. 839-844, 2001.
[23]B. Zhang and M. H. Pong, “Maximum torque control and vector control of permanent magnet synchronous motor,” International Conference on Power Electronics and Drive Systems, vol. 2, pp.548-552, 1997.
[24]A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Transactions on Power Electronics, vol. 6, pp.83-92, 1991.
[25]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D.P. Kothari, “A review of single-phase improved power quality ac-dc converters,” IEEE Transactions on Industrial Electronics, vol 50, pp.962-981, 2003.
[26]J. Chen, D. Maksimovic and R. Erickson, “Buck-boost pwm converters having two independently controlled switches,” IEEE 32nd Power Electronics Specialists Conference, vol.2, pp.736-741, 2001.
[27]J. Chen, D. Maksimovic and R. Erickson, “A new low-stress buck-boost converter for universal-input PPC applications,” IEEE Transactions on Power Electronics, vol. 1, pp.343-349, 2001.
[28]R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input ac/dc converter,” IEEE Transactions on Power Electronics, vol. 16, pp.34-45, 2001.
[29]G. K. Andersen and F. Blaabjerg, “Utilizing the free running current programmed control as a power factor correction technique for the two switch buck-boost converter,” Nineteenth Annual IEEE Power Electronics Conference and Exposition, vol.2, pp.1213-1219,2004.
[30]L. Malesani, L. Rossetto, P. Tenti and P. Tomasin, “AC/DC/AC pwm converter with reduced energy storage in the dc link,” IEEE Transactions on Industry Applications, vol.31, pp.287-292, 1995.
[31]D. Hanselman, “Brushless permanent Magnet motor design,” The Writers’ Collective, U.S.A., 2003.
[32]簡旭佑,“嵌入型永磁馬達的設計與分析 ”,逢甲大學電機工程學系碩士班碩士論文,民國九十三年。
[33]廖福益譯,小型馬達技術,全華書局,民國九十二年。
[34]劉昌煥著,交流電機控制,東華書局,第二版,民國九十二年。
[35]P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives”, IEEE Transactions on Industrial Electronics, vol. 35, pp. 537-541, 1988.
[36]何世賓,“凸極式永磁式同步電動機之高效率及高速控制系統研製”,國立台灣科技大學電機研究所碩士論文,民國八十九年。
[37]O. Ojo, F. Osaloni, W. Zhiqiao and M. Omoigui, “The influence of magnetic saturation and armature reaction on the performance of interior permanent magnet machines,” Conference Record of the 38th IAS Annual Meeting, vol. 3, pp.1689-1695, 2003.
[38]張宏嘉,“寬廣輸入電壓範圍功因校正電路的研究”,國立台灣科技大學電機研究所碩士論文,民國九十四年。
[39]P. Beccue, J. Neely, S. Pekarek and D. Stutts, “Measurement and control of torque ripple-induced frame torsional vibration in a surface mount permanent magnet machine,” IEEE Transactions on Power Electronics, vol. 20, pp.182-191, 2005.
[40]C. Qiao and K. M. Smedley, “A general three-phase pfc controller for rectifiers with a parallel-connected dual boost topology,” IEEE Transactions on Power Electronics, vol. 17, pp. 925-934, 2002.
[41]A. I. Maswood, A. K. Yusop and M. A. Rahman, “A novel suppressed-link rectifier-inverter topology with near unity power factor,” IEEE Transactions on Power Electronics, vol 17, pp. 692-700, 2002.
[42]E. L. M. Mehl and I. Barbi, “An improved high power factor and low cost three-phase rectifier,” IEEE PESC’ 95, vol. 2, pp. 835 -841, 1995.
[43]N. Mohan, T. M. Undeland and W. P. Robbins, Power electronics: converters, applications and design, John Wiley & Sons, 1995.
[44]B. K. Bose, Modern power electronics and ac drives, Prentice Hall, N.J., 2001.
[45]AS5040 Technical Manual, AustriaMicroSystems Co., 2004.

QR CODE