簡易檢索 / 詳目顯示

研究生: 林承毅
Cheng-Yi Lin
論文名稱: 整合人工纖毛微流體晶片與磁場線圈系統進行高效率微尺度混合之研究
A study of high performance micromixing through the integration of an artificial cilia microfluidic chip and a magnetic coil system
指導教授: 陳嘉元
Chia-Yuan Chen
林怡均
Yi-Jiun Lin
口試委員: 鍾俊輝
Chunhui Chung
陳嘉勻
Chia-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 纖毛微流體主動式混合被動式混合粒子影像測速儀
外文關鍵詞: artificial cilia, microfluidics, active mixing, passive mixing, PIV
相關次數: 點閱:289下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微尺度流體混合在現今的生物晶片領域中扮演一個極為重要的角色,流體混合的效率很大程度影響了生物晶片的性能;為了普及微流體混合晶片與改善混合效率,本論文設計了一種嶄新的、低成本且高效率的微流道混合晶片。此種晶片是利用磁性人工纖毛與外加的磁場線圈系統,在流場內產生擾動造成流體混合。晶片的製造方法為機械加工式的翻模轉印製程,與以往微流體晶片常用的蝕刻製程相較起來,具有低成本、低汙染、製造快速等優勢,對於晶片的量產應用有莫大助益。此新型晶片共有兩種形式,分別為單排式以及陣列式;單排式晶片利用磁性纖毛的擾動直接延展流體介面,強制將兩種流體攪拌混合;陣列式晶片利用陣列結構串聯纖毛高速選轉產生的流場擾動,在流場中形成多個渦漩結構,將兩種流體牽引進入漩渦當中造成混合。在量測分析方面,本論文利用微尺度粒子影像測速儀 (Micro Partical Image Velocimetry, μPIV) 來進行流體速度場的量測,以瞭解混合晶片內部流場的運動行為,進一步確認提高混合效率的原因;混合效率利用螢光染色劑與雷射,以亮度差分析流體濃度從而計算混合效率。實驗結果指出,此種以磁力驅動的纖毛結構不論以單排式或陣列式運作,皆能有效地提升混合效率。本論文在此種晶片設計的方法上奠定了一個基礎,未來利用相同原理設計之新型晶片將可更快速地投入微流體晶片的應用之中。


    In recent years, Biochip was growing development. The application of micromixing becomes more and more important. This thesis invented a new micromixing strategy by using artificial cilia and magnetic coil system. The artificial cilia microfluidics chip has the advantages of high mixing performance, low cost, and rapid manufacturing. This thesis designed two distributing types of artificial cilia in microchannel to enhance the mixing performance of the microfluidics. First type is one column distribution along flowing direction, which could extend the flow interface by artificial cilia stirring to enhance molecular diffusion. Second type was array distribution, which could generate some vortices to mix two working fluids. By measuring the mixing performance of each type and analyzing the principles of mixing. There were some results for this thesis: The one column distribution micromixer enhanced the mixing performance from 0.64 to 0.88, and the array distribution micromixer enhanced mixing performance from 0.42 to 0.87. These results demonstrate the new micromixing strategy by using magnetically actuated artificial cilia is quiet effective in micromixing.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VII 表目錄 IX 圖目錄 X 第1章 緒論 1 1.1 前言 1 1.2 被動式混合器常見型式簡介 1 1.2.1 T型混合器 (T-type micromixers) 1 1.2.2 層疊流體式微混合器 (Multi-laminating flow micromixers) 3 1.2.3 混沌流場微混合器 (Chaotic flow micromixers) 6 1.3 主動式混合常見型式簡介 8 1.3.1 週期性流體切換式微混合器 (Periodic flow switching micromixers) 8 1.3.2 聲波流體擾動式微混合器 (Acoustic fluid shaking micromixers) 11 1.3.3 電動力擾動式微混合器 (Electrokinetic instability micromixers) 14 1.3.4 介電泳式微流體混合器 (Dielectrophoretic chaotic micromixer) 15 1.3.5 電潤濕式液滴混合器 (Electrowetting-based droplet mixers) 16 1.3.6 微型葉輪混合器 (Microimpeller mixers) 17 1.4 研究目的 18 第2章 實驗設置 19 2.1 微混合器設計 20 2.1.1 單排式微混合器 20 2.1.2 陣列式微混合器 21 2.2.1 微流道製作材料 24 2.2.2 模具製作 25 2.2.3 微流道晶片與磁力纖毛製作 26 2.3 磁力驅動裝置 28 2.3.1 磁力線圈驅動平台 29 2.3.2 驅動電路 29 2.4 控制程式與訊號輸出元件 30 2.4.1 人機操作介面 31 2.4.2 輸出磁場計算單元 32 2.4.3 PWM信號轉換單元 32 2.4.4 軟硬體溝通單元 33 2.4.5 訊號輸出與截取之硬體裝置 34 2.5 量測方式 35 2.5.1 質量分率量測與混合效率計算方式 36 2.5.2 流體速度場量測方式 37 2.5.3 流體振盪因子計算法 39 第3章 結果與討論 40 3.1 磁性人工纖毛機械特性測試 40 3.2 單排式微混合器性能測試 43 3.2.1 不同運動模式之混合效率測試 44 3.2.2 不同流率下混合效率之變化 45 3.2.3 不同運動頻率下混合效率之變化 47 3.2.4 不同時間點下流場之變化 48 3.3 陣列式微混合器性能測試 50 3.3.1 不同纖毛陣列方式之混合效率測試 50 3.3.2 不同雷諾數下混合效率之變化 51 3.3.3 不同運動頻率下混合效率之變化 53 3.3.4 完整流場測試與流體振盪因子 54 3.3.5 纖毛高速旋轉下之流場觀測 57 3.4 量測誤差驗證 59 第4章 總結 60 參考文獻 62

    [1] Gobby, D., Angeli, P., and Gavriilidis, A., 2001, "Mixing characteristics of T-type microfluidic mixers," Journal of Micromechanics and Microengineering, Vol. 11, pp. 126.
    [2] Schonfeld, F., Hessel, V., and Hofmann, C., 2004, "An optimised split-and-recombine micro-mixer with uniform 'chaotic' mixing," Lab on a Chip, Vol. 4, pp. 65-69.
    [3] Lob, P., Drese, K. S., Hessel, V., Hardt, S., Hofmann, C., Lowe, H., Schenk, R., Sch?Nfeld, F., and Werner, B., 2004, "Steering of liquid mixing speed in interdigital micro mixers: from very fast to deliberately slow mixing," Chemical Engineering & Technology, Vol. 27, pp. 340-345.
    [4] Bessoth, F., 1999, "Microstructure for efficient continuous flow mixing," Analytical Communications, Vol. 36, pp. 213-215.
    [5] Mengeaud, V., Josserand, J., and Girault, H. H., 2002, "Mixing processes in a zigzag microchannel: finite element simulations and optical study," Analytical Chemistry, Vol. 74, pp. 4279-4286.
    [6] Song, H., Yin, X.-Z., and Bennett, D. J., 2008, "Optimization analysis of the staggered herringbone micromixer based on the slip-driven method," Chemical Engineering Research and Design, Vol. 86, pp. 883-891.
    [7] Goullet, A., Glasgow, I., and Aubry, N., 2005, "Dynamics of microfluidic mixing using time pulsing," Discrete and Continuous Dynamical Systems, Supplement, Vol. 2005, pp. 327-336.
    [8] Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M., and Grodzinski, P., 2002, "Bubble-induced acoustic micromixing," Lab on a Chip, Vol. 2, pp. 151-157.
    [9] Oddy, M., Santiago, J., and Mikkelsen, J., 2001, "Electrokinetic instability micromixing," Analytical Chemistry, Vol. 73, pp. 5822-5832.
    [10] Deval, J., Tabeling, P., and Ho, C.-M., "A dielectrophoretic chaotic mixer," in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, 2002, pp. 36-39.
    [11] Paik, P., Pamula, V. K., Pollack, M. G., and Fair, R. B., 2003, "Electrowetting-based droplet mixers for microfluidic systems," Lab on a Chip, Vol. 3, pp. 28-33.
    [12] Ryu, K. S., Shaikh, K., Goluch, E., Fan, Z., and Liu, C., 2004, "Micro magnetic stir-bar mixer integrated with parylene microfluidic channels," Lab on a Chip, Vol. 4, pp. 608-613.
    [13] Chen, C.-Y., Yao, C.-Y., Lin, C.-Y., and Wang, C.-W, 2014, "Real-time remote control of artificial cilia actuation using fingertip drawing for efficient micromixing," JALA-Journal of Laboratory Automation (in press).
    [14] Sfakiotakis, M., Lane, D. M., and Davies, J. B. C., 1999, "Review of fish swimming modes for aquatic locomotion," Oceanic Engineering, IEEE Journal of, Vol. 24, pp. 237-252.
    [15] Chen, C.-Y., Chen, C.-Y., Lin, C.-Y., and Hu, Y.-T., 2013, "Magnetically actuated artificial cilia for optimum mixing performance in microfluidics," Lab on a Chip, Vol. 13, pp. 2834-2839.
    [16] Fang, Y., Ye, Y., Shen, R., Zhu, P., Guo, R., Hu, Y., and Wu, L., 2012, "Mixing enhancement by simple periodic geometric features in microchannels," Chemical Engineering Journal, Vol. 187, pp. 306-310.
    [17] Chen, C.-Y., Lin, C.-Y., and Hu, Y.-T., 2014, "Inducing 3D vortical flow patterns with 2D asymmetric actuation of artificial cilia for high-performance active micromixing," Experiments in Fluids (in press).
    [18] Lima, R., Wada, S., Tsubota, K.-i., and Yamaguchi, T., 2006, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, Vol. 17, pp. 797.

    QR CODE