簡易檢索 / 詳目顯示

研究生: 黃博彥
Bo-Yan Huang
論文名稱: 合成含苯並咪唑之聚醯亞胺質子傳導膜及其性質研究
Synthesis and Characterization of Polyimides Containing Benzimidazolyl Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 黃延吉
Yan-Ji Huang
華沐怡
Mu-Yi Hua
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 122
中文關鍵詞: 苯並咪唑聚醯亞胺質子傳導度交聯機械性質
外文關鍵詞: Benzimidazole, Polyimide, Proton conductivity, Crosslink, Mechanical Property
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由4,4-Oxybis(benzoic acid)與4-硝基苯二胺合成二硝基化合物Bis(4-(2-(5-nitrobenzimidazolyl))phenyl)ether(O/IM/NO2),再將O/IM/NO2還原成二胺單體Bis(4-(2-(5-aminobenzimidazolyl))phenyl)ether (O/IM/NH2)。由六環酸酐NTDA與含benzimidazole二胺單體,包括O/IM/NH2、2,2’-bis(2-benzimidazole)-4,4’-diaminobiphenyl (BP/IM/NH2)與1,3-diamino-5-(2-benzimidazole)benzene (m/IM/NH2)以及其他芳香族的二胺單體合成在主鏈與側基均含有benzimidazole之聚醯亞胺(PI)共聚物,其固有黏度範圍在0.94~1.87dL/g之間,均可塗佈成具韌性之薄膜,這些共聚物有好的熱安定性,於氮氣下10 %裂解溫度皆高於500℃,它們也有高的玻璃轉換溫度(Tg約在300℃),聚合物尚未摻雜磷酸的抗張強度大於103 MPa,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,機械強度會大幅下降。藉由側甲基進行交聯反應,形成交聯 PI 共聚物,交聯後 PI 共聚物因受交聯鍵結,形成高分子鏈緊密堆積,導致磷酸摻雜量下降,但仍能有足夠高的質子傳導度,並能維持好的機械性質,交聯後C3-O6BPBI2PF1.7DMB0.3濕膜抗張強度由8 MPa提升到15 MPa。本研究所合成PI共聚物在140℃時的質子傳導度幾乎都比m-PBI高,例如O7BPBI2PF1與O6BPBI2F1DMB1在140℃時之質子傳導度分別為82.5
與69.7 mS/cm皆高於m-PBI (52.7 mS/cm) ,這結果顯示導入benzimidazole環在主鏈與側基有利於提高質子傳導度,很有潛力應用於中溫型燃料電池的質子傳導膜。


Reaction of 4,4-oxybis(benzoic acid) with 4-nitro-o-phenylenediamine in polyphosphoric acid gave bis(4-(2-(5-nitrobenzimidazolyl))phenyl)ether (O/IM/NO2), which was hydrogenated to give novel monomer of bis(4-(2-(5-aminobenzimidazolyl))phenyl)ether(O/IM/NH2).
A series of copolyimides (PIs) containing main-chain and pendant benzimidazole groups were synthesized from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA), diamines which had benzimidazole such as O/IM/NH2, 2,2 ’-bis(2-benzimidazole)-4,4’- diaminobiphenyl (BP/IM/NH2), 1,3-diamino-5- (2- benzimidazole) benzene (m/IM/NH2) and other aromatic diamines. They had inherent viscosities in the range of 0.94~1.87 dL/g, and they could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temperature more than 500℃ in nitrogen, and their glass transition temperature is around 300℃. These films exhibited good mechanical properties with tensile stress exceeded 103 MPa. However, the mechanical properties of PI significantly decreased when phosphoric acid doping level increased. The mechanical properties of phosphoric acid doped PIs could be improved via crosslinking reaction of methyl group, cross-linked PI would form close packing, and it led to decrease of phosphoric acid doping level, but it could still maintain high proton conductivity and high mechanical properties. The tensile strength of C3-O6BPBI2PF1.7DMB0.3 in wet state enhanced from 8 to 15 MPa after crosslinking reaction. Almost all PIs exhibited higher on proton conductivities at 140℃ than m-PBI(52.7 mS/cm). For example, the proton conductivities of O7BPBI2PF1 and O6BPBI2F1DMB1 were 82.5 and 69.7 mS/cm, respectively. Thus, these polyimides (PIs) containing benzimidazole on main chain and on pendant could be the promising materials alternative to m-PBI membrane for medium-temperature fuel cells applications because of their high proton conductivity and good oxidative stability.

目錄 摘要 I Abstract III 目錄 V 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1前言 1 1.2燃料電池的介紹 3 1.2.1 燃料電池的發展 3 1.2.2 燃料電池的特色 5 1.2.3 燃料電池的種類 7 1.2.4 燃料電池的原理及應用 10 1.3直接甲醇燃料電池(Direct Methanol Fuel Cell,DMFC)介紹 12 1.3.1 直接甲醇燃料電池的原理及構造 13 1.3.2直接甲醇燃料電池的核心 14 1.4中溫型燃料電池簡介 16 1.4.1 中溫型 (150~250 ℃) 燃料電池的優點 17 1.4.2 聚苯咪唑薄膜摻雜磷酸的質子傳導機制 18 1.5 交聯劑介紹 20 1.6 文獻回顧 25 1.7研究動機與研究內容 36 第二章 實驗 39 2.1實驗藥品 39 2.2聚醯亞胺共聚物實驗程序 41 2.2.1單體合成 42 2.2.2合成聚醯亞胺共聚物(PIs) 44 2.3 聚合物之物性與化性分析 47 第三章 結果與討論 52 3.1 單體與PIs 的合成 52 3.2固有黏度 57 3.3溶解度測試 60 3.4交聯反應證明 62 3.4.1 DSC 量測與溶解度證明 62 3.4.2FT-IR分析 67 3.5熱性質分析 69 3.6 PI共聚合物組成對磷酸摻雜量的效應 73 3.7膨潤度的測試 78 3.8 質子傳導度分析 82 3.8.1溫度對質子傳導度的效應 82 3.8.2化學構造對質子傳導度的效應 90 3.9 機械性質量測 92 3.9.1未摻雜磷酸薄膜機械性質量測 92 3.9.2摻雜磷酸薄膜機械性質量測 96 3.9.3甲基交聯對質子傳導度與機械性質影響 100 3.10 氧化安定性測試 102 第四章 結論 104 第五章 參考文獻 106  

1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2nd Edition)”, John Wiley & Sons Inc, 1, 2003.
2. 溫武義,燃料電池技術,全華科技圖書有限公司,1-12,2004。
3. 黃鎮江,燃料電池,滄海圖書有限公司,12,2008。
4. S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Int. J. Hydrogen Energy, 2010, 35, 9349.
5. O. Stonehart, J. Appl. Electrochem., 1992, 22, 995.
6. S. Surampudi, S. R. Narayanan, E. Vamos, J. Power Sources, 1994, 47, 377.
7. M. P. Hogarth, G. A. Hards, Platinum Maters Rev., 1996, 40, 150.
8. 財團法人國家實驗研究院科技政策研究與資訊中心,2005年7月。
9. C. H. Parka, C. H. Leeb, M. D. Guivera, Y. M. Leea, Prog. Polym. Sci., 2011, 36, 1443.
10. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci.,2005, 259, 10.
11. H. J. Kim, T. W. Lim, Y. S. Park, K. S. Shin, J. C. Lee, Macromol. Chem. Phys., 2007, 208, 2293.
12.T. H. Kim, T. W. Lim, J. C. Lee, J. Power Source, 2007, 172, 172.
13. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, J. Electrochem. soc., 2003, 150, 1599
14.Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc., 2004, 151, 8.

15.K. Vanherck, G.Koeckelberghs, I.Vankelecom, Progress in Polymer Science, 2013, 38, 884.
16. B. Xing, O. Savadogo, Journal of New Materials for Electrochemical Systems, 1999, 2, 95.
17. M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochimica Acta, 2000, 45, 1395.
18. J. Yang, H.Jiang, L.Gao, J. Wang, Y. xu, R.He, International journal of hydrogen energy, 2018, 43, 3300.
19. Z. Yue, Y.Cai, S.Xu, Journal of Membrane Science, 2016, 501, 222.
20. Q. Che, N. Chen, J. Yu, S. Cheng, Solid State Ionics, 2016, 289,200.
21. T. Qu, H. Chen, B. Hu, H. Zheng,W. Li, International journal of hydrogen energy, 2018, 43, 12340.
22. R. Chen, F. Xu, K. Fu, J.Zhou, Q. Shi, C.Xue, Y. Lyu, B. Guo, G. Li, Materials Research Bulletin, 2018, 103, 142.
23. J. Chen, J. Wu, C. Lee, M. Tsai, K. Chen, Journal of Membrane Science, 2015, 483, 149.
24. C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer, 2010, 42, 359.
25. Y. Yin, S. Hayashi, O. Yamada, H. Kita, and K. I. Okamoto, Macromolecular rapid communications, 2005, 26, 696.
26. H. Bai, H. Zhang, Y. He, J. Liu, B. Zhang, and J. Wang, Journal of Membrane Science, 2014, 454, 220.
27.陳泰安,合成新型含苯咪唑側基之聚醯亞胺與含苯並唖唑側基之聚苯咪唑及其性質研究,台灣科技大學化工系碩士論文,2014。
28. J. A. Mikroyannidis, Polymer,1996, 37, 2715.
29.F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci., 2002, 197, 231.
30. 陳思源,合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究,台灣科技大學化工系碩士論文,2013。
31. J.A., Mader, B.C., Benicewicz, Macromolecules, 2010, 43,6706.

無法下載圖示 全文公開日期 2023/08/02 (校內網路)
全文公開日期 2028/08/02 (校外網路)
全文公開日期 2028/08/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE