簡易檢索 / 詳目顯示

研究生: 林暐靜
Wei-Ching Lin
論文名稱: 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、反應性微膠顆粒與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響
Synthesis of Nano-scale Colloidal Silica from Elemental Silicon by Hydrolysis, and Effects of Silane-grafted Silica Nanoparticles, Reactive Microgel Particles, and Silane-grafted and Polymer-grafted Graphene Oxide and Thermally Reduced Graphene Oxide on the Cure Kinetics, Glass Transition Temperatures, and X-ray Scattering Characteristics for Vinyl Ester Resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 308
中文關鍵詞: 反應性微膠顆粒二氧化矽奈米顆粒乙烯基酯樹脂聚合固化反應動力氧化石墨烯熱脫層氧化石墨烯玻璃轉移溫度動態光散射儀X-ray散射儀微分掃描熱分析儀傅立葉紅外光分析儀落球式黏度計動態機械分析儀
外文關鍵詞: SAXS, WAXS, Rolling-ball viscometer
相關次數: 點閱:340下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用元素矽水解法合成無機二氧化矽奈米顆粒,並可以有效控制其顆粒大小,亦探討在苯乙烯/乙烯基酯樹脂/特用添加劑三成份系統之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響,其特用添加劑,分別為 (1)反應性微膠顆粒 (2)氧化石墨烯 (3)熱脫層氧化石墨烯 (4)高分子接枝之熱脫層氧化石墨烯 (5)矽烷接枝之氧化石墨烯 及 (6)矽烷接枝之二氧化矽。

吾人利用動態光散射儀測量二氧化矽奈米顆粒的粒徑分布,以及由X-ray散射儀鑑定 (1)氧化石墨烯 (2) 熱脫層氧化石墨烯 (3)高分子接枝之熱脫層氧化石墨烯 (4)矽烷接枝之氧化石墨烯之微結構,以及(5) 苯乙烯/乙烯基酯樹脂之稀薄溶液的環動半徑,亦使用微示差掃描熱卡分析儀及傅立葉轉化紅外線光譜儀,測量苯乙烯/乙烯基酯樹脂雙成份系統與苯乙烯/乙烯基酯樹脂/特用添加劑之三成份系統在聚合固化過程中的反應動力,以及使用落球式黏度計測量苯乙烯/乙烯基酯樹脂/特用添加劑之三成份系統的黏度。根據Takayanagi機械模式,苯乙烯/乙烯基酯樹脂/特用添加劑聚合固化系統其在每一相區的玻璃轉移溫度,吾人亦使用動態機械分析儀測定之。


In this study, silica nanoparticles(SNP) with a diameter ranging from15 nm to 60 nm were synthesized by size-controllable hydrolysis of elemental silicon. The effects of six other additives, including (1) reactive microgel particles, (2)graphene oxide,(3)thermally reduced graphene oxide, (4) polymer-grafted thermally reduced graphene oxide, (5) silane-grafted graphene oxide, and (6) silane-grafted silica nanoparticles on the cure kinetics, glass transition temperature and X-ray scattering characteristics for the styrene(St)/vinyl ester resin(VER)/special additives ternary systems after the cure have also been investigated.

The particle size distribution of silica nanoparticles was measured by dynamic light scattering (DLS) samples such as and identified (1) graphene oxide, (2) thermally reduced graphene oxide, (3) polymer-grafted thermally reduced graphene oxide, (4) silane-grafted graphene oxide, and (5) the VER in dilute St/VER binary system were also characterized by X-ray scattering methods (SAXS and WAXS).

Moreover, the reaction kinetics for the St/VER/special additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The viscosity of the St/VER/special additive ternary system was measured by using a falling ball viscometer. Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for St/VER/special additive ternary system has been measured by dynamic mechanical analysis (DMA).

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 x 表目錄 xxviii 第一章 緒論 1 1-1 複合材料 1 1-2 不飽和聚酯樹脂 1 1-3 乙烯基酯樹脂 2 1-4 抗體積收縮劑 3 1-5 增韌劑 3 1-6 二氧化矽 4 1-7 石墨烯/高分子奈米複合材料 4 1-8 研究範疇 6 第二章 文獻回顧 7 2-1 自由基聚合反應 7 2-2 不飽和聚酯樹脂(UP)和苯乙烯(St)之交聯共聚合反應 9 2-3 苯乙烯/不飽和聚酯/抗體積收縮劑三成分系統之相容性研究 11 2-4 不飽和聚酯(UP)樹脂之聚合固化後微觀結構之研究 12 2-5 不飽和聚酯(UP)樹脂之反應動力學模式之研究 13 2-6 不飽和聚酯(UP)樹脂玻璃轉移溫度之研究 16 2-7 苯乙烯(St)/乙烯基酯樹脂(VER)之反應動力 17 2-8 高分子稀薄溶液之環動半徑研究 18 2-9 二氧化矽 20 2-10 氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 22 2-11 石墨烯/高分子奈米複合材料 23 第三章 實驗方法與設備 24 3-1 實驗原料 24 3-1-1 乙烯基酯樹脂 (Vinyl-ester resin,VER) 24 3-1-2 不飽和聚酯樹脂(UP Resin) 25 3-1-3 反應性微膠(RM) 顆粒 26 3-1-4 氧化石墨烯(Graphene Oxide, GO)與熱脫層氧化石墨烯(Thermally Reduced Graphene Oxide, TRGO) 28 3-1-5 矽烷接枝之氧化石墨烯(Silane-grafted Graphene Oxide, sg-GO) 28 3-1-6 高分子接枝之熱脫層氧化石墨烯(Polymer-grafted Thermally Reduced Graphene Oxide, TRGO-polymer) 29 3-1-7 實驗藥品 30 3-2 實驗儀器 34 3-2-1 DELTA D80 超音波洗淨機 34 3-2-2 機械攪拌器 34 3-2-3 落球式黏度計 34 3-2-4 動態光散射儀 (Dynamic Light Scattering, DLS) 35 3-2-5 微分掃描卡計 ( Differential Scanning Calorimeter,DSC) 35 3-2-6 動態機械分析儀(Dynamic Mechanical Analyzer, DMA) 35 3-2-7 傅立葉紅外線光譜儀 ( Fourier Transform Infrared Spectroscopy, FTIR ) 36 3-2-8 X光散射儀 (X-ray Scattering System) 37 3-3 實驗步驟 38 3-3-1 元素矽水解法合成二氧化矽 (Silica) 38 3-3-2 活化二氧化矽顆粒 41 3-3-3 未反應之MPS-Silane treated SiO2製備 41 3-3-4 反應之MPS-Silane treated SiO2製備 42 3-3-5 動態光散射儀樣品製備與操作 42 3-3-6 St/VER(n=2.0)之雙成份系統溶液製備 42 3-3-7 St/VER (n=2.0)/特用添加劑之三成份系統溶液製備 43 3-3-8 St/UP之雙成份系統溶液製備 43 3-3-9 落球式黏度計黏度測定 44 3-3-10 微分掃描卡計(DSC)反應動力測定 44 3-3-11 傅立葉紅外線光譜儀(FTIR)校正曲線測定 45 3-3-12 傅立葉紅外線光譜儀(FTIR)固態之樣品製備與測定 45 3-3-13 傅立葉紅外線光譜儀(FTIR)反應動力測定 46 3-3-14 動態機械分析儀(DMA)固化試片製作及測定 47 3-3-15 X-ray散射儀測定粉體之層間距 47 3-3-16 X-ray散射儀測定懸浮溶液之層間距 48 3-3-17 X-ray散射儀測定環動半徑 49 3-4 性質測定與分析方法 50 3-4-1 微分掃描卡計(DSC)熱分析 50 3-4-2 傅立葉紅外線光譜儀(FTIR)測定反應動力之理論與分析 51 3-4-3 St/VER system反應動力分析 52 3-4-4 St/UP system反應動力分析 54 3-4-5 動態機械分析儀(DMA)理論 56 3-4-6 X-ray散射儀之相關理論 57 3-4-7 利用SAXS測定環動半徑(Radius of Gyration, Rg) 59 第四章 結果與討論 60 4-1 二氧化矽的合成及鑑定 60 4-1-1 DLS鑑定二氧化矽奈米顆粒 60 4-1-2 FTIR鑑定活化前後二氧化矽顆粒 66 4-1-3 FTIR鑑定MPS-Silane treated SiO2 74 4-2 落球式黏度計測定黏度 86 4-2-1 St/VER (n=2.0) /氧化石墨烯(GO)之三成分系統 86 4-2-2 St/VER (n=2.0) /熱脫層氧化石墨烯(TRGO)之三成分系統 88 4-2-3 比較St/VER (n=2.0) /氧化石墨烯(GO) or 熱脫層氧化石墨烯(TRGO)之三成分系統 90 4-2-4 St/UP (MA-PA-PG型)之雙成分系統 91 4-3 小角度X光散射法(SAXS)測定環動半徑(Rg) 92 4-3-1 乙烯基酯樹脂 93 4-4 廣角度X光散射法(WAXS)測定層間距 98 4-4-1 石墨(Graphite)、氧化石墨烯(GO)及熱脫層氧化石墨烯(TRGO)粉體 99 4-4-2 高分子接枝之熱脫層氧化石墨烯(TRGO-polymer)粉體 101 4-4-3 矽烷接枝之氧化石墨烯 (sg-GO)粉體 102 4-4-4 氧化石墨烯(GO)/甲苯(Toluene)之雙成分系統 104 4-5 DSC測定反應動力 107 4-5-1 St/VER(n=2.0)之雙成分系統 107 4-5-2 St/VER(n=2.0)/氧化石墨烯(GO)之三成分系統 110 4-5-3 St/VER(n=2.0)/熱脫層氧化石墨烯(TRGO)之三成分系統 113 4-5-4 St/VER(n=2.0)/高分子接枝之熱脫層氧化石墨烯(TRGO-polymer)之三成分系統 116 4-5-5 St/VER(n=2.0)/矽烷接枝之氧化石墨烯(sg-GO)之三成分系統 124 4-5-6 St/VER(n=2.0)/反應性微膠顆粒(RM)之三成分系統 131 4-5-7 St/VER(n=2.0)/矽烷接枝之二氧化矽顆粒(MPS-Silane treated SiO2)之三成分系統 138 4-5-8 St/UP(MA-PA-PG型)樹脂之雙成份系統 141 4-6 FTIR測定校正曲線 144 4-6-1 苯乙烯 145 4-6-2 乙烯基酯樹脂 149 4-6-3 MA-PA-PG型不飽和聚酯(UP)樹脂 152 4-6-4 MA-PA-PG型不飽和聚酯(UP)樹脂之反應性微膠顆粒 155 4-6-5 MA-HD型不飽和聚酯(UP)樹脂 158 4-6-6 MA-HD型不飽和聚酯(UP)樹脂之反應性微膠顆粒 161 4-7 FTIR測定反應動力 164 4-7-1 St/VER(n=2.0)之雙成份系統 164 4-7-2 St/VER(n=2.0)/氧化石墨烯(GO)之三成份系統 173 4-7-3 St/VER(n=2.0)/熱脫層氧化石墨烯(TRGO)之三成份系統 186 4-7-4 St/UP(MA-PA-PG型)樹脂之雙成份系統 199 4-7-5 St/UP(MA-HD型)樹脂之雙成份系統 202 4-8 DMA測定玻璃轉移溫度 205 4-8-1 St/VER(n=2.0)之雙成分系統 206 4-8-2 St/VER(n=2.0)/氧化石墨烯(GO)之三成分系統 212 4-8-3 St/VER(n=2.0)/熱脫層氧化石墨烯(TRGO)之三成分系統 218 4-8-4 St/VER(n=2.0)/高分子接枝之熱脫層氧化石墨烯(TRGO-polymer)之三成分系統 224 4-8-5 St/VER(n=2.0)/矽烷接枝之氧化石墨烯(sg-GO)之三成分系統 237 4-8-6 St/VER(n=2.0)/反應性微膠顆粒(RM)之三成分系統 249 第五章 結論 259 第六章 建議與未來工作 266 第七章 參考文獻 268

1.馬振基,趙珏,高分子複合材料(下冊)製程、檢測與應用,國立編譯館,華香園出版社,民國九十五年
2.R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York(1982).
3.N. A. Miller, C. D. Stirling, Polym. Polym. Comps., 9, 31(2001).
4.R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
5.M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976,P 370.
6.F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, P28.
7.E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970, 15, 113.
8.K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia, Hanser Publishers, 1993. Ch4.
9.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
10.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975, 19, 3045.
11.L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991, 32, 1593.
12.Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
13.L. J. Lee, W. Li, and K.H. Hsu, Polymer, 2000, 41, 711.
14.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991, 32, 636.
15.Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
16.J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005, 98, 264.
17.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003, 89, 3336.
18.C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991, 31, 1450.
19.Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000, 78, 543.
20.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 323.
21.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci., 2004, 91, 3388.
22.Y.J. Huang and W.C. Jiang, Polymer, 1998, 39, 6631.
23.E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics , 31, 619(1993).
24.S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research, 33, 2778(1994).
25.The B.F. Goodriche Co, WO93/21274, Oct. 28(1993).
26.W.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
27.R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York (1979).
28.H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecule,43, 6500(2010) .
29.盧天智, 碩士論文,台灣科技大學, 1991.
30.H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, 50(1990).
31.Y.S. Yang and L.J. Lee, Polymer, 29, 1793(1988).
32.K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 7, 2561(1969).
33.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 55, 305(1995).
34.Y.J. Huang and J.C. Horng, Polymer, 39, 3683(1998).
35.Y.J. Huang and L.D. Chen, Polymer, 39, 7049(1998).
36.Y.J. Huang and C.C. Su, Polymer,35, 2397(1994).
37.M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187(1973).
38.S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937(1979).
39.C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749(1983).
40.J. F. Stevenson, Polym. Eng. Sci., 26(11), 746(1989).
41.J. F. Stevenson, SPE. ANTEC. Papers,26, 452(1980).
42.L. J. Lee, Polym. Eng. Sci., 21, 483(1981).
43.Y. J. Huang, and L. J. Lee, AIChE. J., 31, 1585(1985).
44.C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859(1987).
45.C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296(1985).
46.G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper,974(1987).
47.Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990).
48.W. D. Cook and O. Delaycki, J. Polym. Sci., Part B: Polym. Phys., 12, 2111(1974).
49.J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216(1993).
50.C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786(1991).
51.P. W. K. Lam, Polym. Eng. Sci., 29,609(1989).
52.S. Ziaee, G. R. Palmese, Journal of Polymer Science: Part B: Polymer Physics, 37, 725–744(1999).
53.K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 39, 2935(1998).
54.R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000. Ch5.
55.T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 35, 2913(1997).
56.J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley, New York, 2011, P137.
57.R. P. W. Scott, Silica Gel and Bonded Phases, Wiley, New York, 1993.
58.K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, T. Fukuda, Macromolecules , 38, 2137(2005).
59.W. Stober, A. Fink, E. Bohn, Journal of Colloid and Interface Science, 26, 62(1968).
60.J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui, Journal of Colloid and Interface Science , 326, 138(2008).
61.W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339(1958).
62.H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535(2006).
63.Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808(2009).
64. F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt,Macromolecules,45, 7083(2012).
65.H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441(2010).
66.H. Kim and C.W. Macosko, Macromolecules, 41, 3317(2008).
67.W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178(2012).
68.J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules,44, 2808(2011).
69.J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045(2012).
70.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules,42, 5251(2009).
71.S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806(2008).
72.M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664(2011).
73.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558(2007).
74.陳彥博, 以乳化聚合法合成用於乙烯基酯樹脂及不飽和聚酯樹脂之奈米級及次微米級反應型微膠顆粒之抗收縮劑及增韌劑 ,碩士論文,台灣科技大學, 2019.
75.張庭豐, 以 RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響 ,碩士論文,台灣科技大學, 2019.
76.林禹丞, 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響 ,碩士論文,台灣科技大學, 2019.
77.J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui, Journal of Colloid and Interface Science , 326, 138(2008).
78.Y.S. Yang and L.J. Lee, Polymer, 29, 1793(1988).
79.K. Horie, I. Mita, and H. Kambe, J. Polym. Sci.:Part A1:Polymer Physics Edition, 1970, 8, 2839.
80.吳晨瑜, 由元素矽水解法合成無機二氧化矽奈米顆粒及探討奈米級及次微米級核殼型橡膠添加劑、無機二氧化矽顆粒、矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯、及反應型微膠顆粒對乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性之影響,碩士論文,台灣科技大學, 2016.
81.江昆達, 奈米級及次微米級核殼型橡膠添加劑及蒙特納石黏土對苯乙烯/乙烯基酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響研究,碩士論文,台灣科技大學, 2008.
82.S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, 1993,P 321-337.
83.R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000. Ch5.
84.J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley, New York, 2011, P137.
85.廖婉儒, 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、核殼型橡膠、反應性微膠顆粒、與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性之影響,碩士論文,台灣科技大學, 2018.
86.黃姵瑜, 由元素矽水解法合成無機二氧化矽奈米顆粒及探討核殼型橡膠、無機二氧化矽顆粒、矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對乙烯基酯樹脂之聚合固化反應動力及玻璃轉移溫度之影響,碩士論文,台灣科技大學, 2017.
87.黃豪寬, 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基溶液聚合法合成用於不飽和聚酯及乙烯基酯具核殼型結構之高分子接枝二氧化矽奈米顆粒、高分子接枝之氧化石墨烯、及高分子接枝之脫層石墨烯奈米層板抗收縮劑及增韌劑,碩士論文,台灣科技大學, 2015.
88.Yuliana, 矽烷接枝二氧化矽奈米顆粒及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究,碩士論文,台灣科技大學, 2013.
89.Huang, Y. J.; Chen, L. D. Polymer, 1998, 39 (26), 7049.
90.Takayanagi, M.; Imada, K.; Kajimaya, T. J. Polym. Sci. Part C, 1966, 15, 263.

QR CODE