簡易檢索 / 詳目顯示

研究生: 林泓宇
Hong-Yu Lin
論文名稱: 利用粒子群演算法實現電子凸輪軌跡最佳化研究
Study on Trajectory Optimizations of Electronic Cams Using Particle Swarm Algorithm
指導教授: 郭永麟
Yung-Lin Kuo
口試委員: 王可文
Ke-Wen Wang
吳宗亮
Tsung-Liang Wu
楊振雄
Chen-Hsiung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 143
中文關鍵詞: 電子凸輪軌跡曲線最佳化伺服沖床
外文關鍵詞: electronic cam, trajectory optimization, servo press
相關次數: 點閱:253下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技和電子技術的日漸進步與發展,傳統機械式凸輪有著易磨損導致精度下降、無法彈性改變凸輪曲線等缺點,逐漸無法滿足當今工業小規模客製化的生產模式,而電子凸輪由於沒有實際主從軸結構所以沒有磨損問題,並且通過簡單的改寫程式便能靈活的更改凸輪運動曲線,大幅降低生產成本,因此在現今工業生產中電子凸輪已漸漸取代傳統凸輪成為主流。本文首先探討電子凸輪的研究背景,藉由已發展成熟的凸輪運動曲線規範來進行電子凸輪曲線軌跡規劃,鑒於規範中的曲線選擇太少,本文額外提出了另外三種曲線分別是多段三次多項式、非均勻有理B樣條曲線及逆向電子凸輪曲線,仿造規範中曲線規劃的步驟進行電子凸輪曲線軌跡規劃,讓使用者有另一種選擇。
然而在曲線規劃的過程中,對於如何得到理想曲線並沒有一個所謂的標準且快速方便的流程,常常得依照使用者的經驗做判斷來回重複修正,導致浪費大量的時間,為此我們將電子凸輪曲線規劃結合最佳化演算法概念,引入粒子群演算法進行最佳化運算,由程式來計算出一條符合要求的最佳曲線,使得使用者不需要再用傳統耗時且依賴使用者經驗的調整辦法,而在粒子群演算法的內部計算規則中,本文額外提出一種新的規則來改良其效果。
之後我們以伺服沖床為例,對沖床中三種模式分別利用規範中的曲線及本文額外提出的三種曲線進行電子凸輪曲線軌跡規劃,再結合粒子群演算法求得各自的最佳曲線軌跡結果,最後根據曲線軌跡結果討論不同曲線的特性及效果。


With the development of science and technology, traditional mechanical cams are gradually replaced by electronic cams due to their shortcomings, such as easy wear and tear, resulting in decreased accuracy and inability to elastically change the cam curve. This thesis discusses the research background of the electronic cam and uses the well-developed cam motion curve standards to plan the trajectories of the electronic cam curves. In view of the fact that there are too few curve choices in the standards, this thesis proposes three kinds of curves, which are multi-segment third-degree polynomials, non-uniform rational B-spline curves, and inverse electronic cam curves.
However, in the process of curve planning, there is no standard, fast and convenient process to obtain the ideal curve. It is often necessary to make judgments based on the user’s experiences and repeated corrections, which results in wasting a lot of time. Therefore, we use the electronic cam curve and combine the concept of optimization algorithm, where the particle swarm optimization for optimization is used to calculate an optimal curve that meets the requirements by the program codes. In the internal calculation rules of particle swarm optimization algorithm, this thesis proposes a new rule to improve its effects.
Finally, we take the servo press as an example and use the curves in the standards as well as the three additional curves proposed in this thesis to plan the trajectories of the electronic cam curves for the three operating modes of the servo press. The characteristics and effects of different curves are discussed based on the results of curve designs.

摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 電子凸輪 2 1.2.2 曲線規劃 3 1.2.3 粒子群演算法 4 1.3 研究動機 5 1.4 研究方法 6 1.5 研究貢獻 6 1.6 論文架構 7 第二章 電子凸輪曲線規劃 8 2.1 電子凸輪簡介 8 2.2 規範 VDI-2143 10 2.2.1 凸輪表 10 2.2.2 運動曲線 11 2.2.3 曲線標準化 14 2.2.4 曲線特性值 15 2.3 馬達能力圖 17 2.4 五次多項式曲線 18 2.5 多段三次多項式曲線 20 2.6 非均勻有理B樣條曲線 23 2.7 逆向電子凸輪曲線 32 2.8 曲線分析與比較 38 第三章 最佳化演算法 40 3.1 最佳化電子凸輪曲線 40 3.2 粒子群演算法 44 3.3 自適應權重粒子群演算法 46 3.4 最佳化粒子行為優化 48 第四章 伺服沖床應用 50 4.1 伺服沖床簡介 50 4.2 沖床鐘擺模式 52 4.2.1 鐘擺模式簡介 52 4.2.2 最佳化問題建立 54 4.2.3 目標函數CSPM最佳化 60 4.2.4 目標函數Cv最佳化 63 4.2.5 目標函數Ca最佳化 67 4.2.6 目標函數CMdyn最佳化 70 4.2.7 討論 74 4.3 沖床引伸模式 77 4.3.1 引伸模式簡介 77 4.3.2 最佳化問題建立 78 4.3.3 目標函數CSPM最佳化 84 4.3.4 目標函數Cv最佳化 87 4.3.5 目標函數Ca最佳化 91 4.3.6 目標函數CMdyn最佳化 94 4.3.7 討論 98 4.4 沖床脈衝模式 101 4.4.1 脈衝模式簡介 101 4.4.2 最佳化問題建立 103 4.4.3 目標函數CSPM最佳化 110 4.4.4 目標函數Cv最佳化 114 4.4.5 目標函數Ca最佳化 117 4.4.6 目標函數CMdyn最佳化 121 4.4.7 討論 124 第五章 結論與未來展望 130 5.1 結論 130 5.2 未來展望 130 參考文獻 132

[1] G. Chen, Q. Li, W. Wang, and Z. Meng, "Data preparation for electronic cam based needle bar shifting mechanism of carpet tufting machine," 2010 2nd International Conference on Industrial and Information Systems, IEEE, 2010, pp. 48-51.
[2] D. H. Kim and T.-C. Tsao, "Robust performance control of electrohydraulic actuators for electronic cam motion generation," IEEE Transactions on Control Systems Technology, vol. 8, no. 2, 2000, pp. 220-227.
[3] T. A. Johansen, O. Egeland, E. Aa Johannessen, and R. Kvamsdal, "Free-piston diesel engine timing and control toward electronic cam and crankshaft," IEEE Transactions on Control Systems Technology, vol. 10, no. 2, 2002., pp. 177-190
[4] A. Schleinitz, H. Schlegel, and M. Putz. "Definition of characteristic values for the efficient and safe implementation of electronic cam gears," International Conference on Intelligent Systems in Production Engineering and Maintenance, AISC, vol. 835, 2018, pp. 128-138.
[5] C.-Y. Lu, W.-Y. Houng, C.-W. Chang, S.-H. Yen, C.-L. T, and T.-J. Su, "Stamping system with automated feeding based on programmable logic controller electronic cam function," Sensors and Materials, vol. 34, no. 3, 2022, pp. 1105-1117.
[6] J. Bi, W. Fan, H. Huang, and B. Liu, "Reliability design of an electronic cam curve for flying shear machine in short materials cutting," Journal of Shanghai Jiaotong University (Science), vol. 25, no. 2, 2020, p. 246-252.
[7] J. Xu, L. Zhang, and M. Qiao, "Research on electronic cam based on NURBS interpolation algorithm," 2009 9th International Conference on Electronic Measurement & Instruments, IEEE, vol. 4, 2009, pp. 669-674.
[8] J. Wang and T.-C. Tsao, "Repetitive control of linear time varying systems with application to electronic cam motion control," 2004 American Control Conference, IEEE, vol. 4, 2004, pp. 3794-3799.
[9] B. Zheng, G. Jiang, F. Xia, and A. Zhang, "Design of dynamic tension compensation system for warp knitting let-off based on model predictions," Fangzhi Xuebao/Journal of Textile Research, vol. 42, no. 9, 2021, pp. 163-169.
[10] R. J. Moreno Masey, J. O. Gray, T. J. Dodd, and D. G. Caldwell, "Elliptical point to point trajectory planning using electronic cam motion profiles for high speed industrial pick and place robots," 2009 IEEE Conference on Emerging Technologies & Factory Automation, IEEE, 2009, pp. 1-8.
[11] C. Ming, X. Chi, Z. Sun, and Y. Sun, "Design of electronic cam for lower hook mechanism of fishing net-weaving machine based on polynomial fitting," Textile Research Journal, vol. 92, no. 11-12, 2022, pp. 1748-1759.
[12] Y. Qiu, D. J. Perreault, T. A. Keim, and J. G. Kassakian, "Nonlinear system modeling, optimal cam design, and advanced system control for an electromechanical engine valve drive," IEEE/ASME Transactions on Mechatronics, vol. 17, no. 6, 2012, pp. 1098-1110.
[13] T.-C. Lu and S.-L. Chen, "novel feedrate optimization method for NURBS tool paths under various constraints," IEEE Access, vol. 10, 2022, pp. 3192-3205.
[14] Y. Ning, W. Xu, F. Liu, H. Jin, and B. Li, "Design of cam profile for variable stiffness actuator based on Bezier spline," 2018 IEEE International Conference on Information and Automation, IEEE, 2018, pp. 1163-1168.
[15] M. Yue, X. Hou, X. Zhao, and X. Wu, "Robust tube-based model predictive control for lane change maneuver of tractor-trailer vehicles based on a polynomial trajectory," IEEE Transactions on Systems, vol. 50, no. 12, 2020, pp. 5180-5188.
[16] L. K. Sahu, O. P. Gupta, and M. Sahu, "Design of cam profile using higher order B-spline," International Journal of Innovative Science, Engineering and Technology, vol. 3, no. 2, 2016, pp. 327-335.
[17] T. T. N. Nguyen, S. Kurtenbach, M. Hüsing, and B. Corves, "A general framework for motion design of the follower in cam mechanisms by using non-uniform rational B-spline," Mechanism and Machine Theory, vol. 137, 2019, pp. 374-385.
[18] X. Shi, H. Fang, and L. Guo, "Multi-objective optimal trajectory planning of manipulators based on quintic NURBS," 2016 IEEE International Conference on Mechatronics and Automation, IEEE, 2016, pp. 759-765.
[19] L. Kohaupt, "Cam design by hyperbolic spline functions of fourth order," IMA Journal of Management Mathematics, vol. 10, no. 4, 1999, pp. 245-263.
[20] Y. Jiang, J. Li, X. Guo, Z. Jiang, and O. Wang, "Motion trajectory control of underground intelligent scraper based on particle swarm optimization," 2017 Chinese Automation Congress, IEEE, 2017, pp. 2287-2291.
[21] W. Dong and M. Zhou, "A supervised learning and control method to improve particle swarm optimization algorithms," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, 2017, pp. 1135-1148.
[22] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, and Y. Xia, "Solving constrained trajectory planning problems using biased particle swarm optimization," IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 3, 2021, pp. 1685-1701.
[23] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, and Y. Xia, "Two-stage trajectory optimization for autonomous ground vehicles parking maneuver," IEEE Transactions on Industrial Informatics, vol. 15, no. 7, 2019, pp. 3899-3909.
[24] R. Ge and Y. Du, "Kinematic optimization of cam mechanisms with variable input speed," 2016 International Conference on Cybernetics, Robotics and Control, IEEE, 2016, pp. 55-59.
[25] G. Xuan, Y. Shao, and L. Liu, "Optimal design of grooved cam profile using non-uniform rational B-splines," International Conference on Mechanical, Electronic and Information Technology Engineering, EDP Science, Vol. 139, No. 47, 2017, pp. 1-5.
[26] J. H. Lee, J. Kim, J. Song, D. Kim, Y. Kim, and S. Jung, "Distance-based intelligent particle swarm optimization for optimal design of permanent magnet synchronous machine," IEEE Transactions on Magnetics, vol. 53, no. 6, 2017, pp. 1-4.
[27] J.-J. Jiang, W.-X. Wei, W.-L. Shao, Y.-F. Liang, and Y.-Y. Qu, "Research on large-scale bi-level particle swarm optimization algorithm," IEEE Access, vol. 9, 2021, pp. 56364-56375.
[28] 邱重融, “電子凸輪之運動曲線分析與應用研究,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, 2017
[29] 楊承穎, “利用智慧化電子凸輪實現伺服沖床之運動軌跡 最佳化研究,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, 2020
[30] Verein Deutscher Ingenieure e.V., "V. D. I. 2143, Blatt 1: Bewegungsgesetze für Kurvengetriebe-Theoretische Grundlagen," Düsseldorf: VDI, 1980.
[31] Verein Deutscher Ingenieure e.V., "V. D. I. 2143, Blatt 2: Bewegungsgesetze für Kurvengetriebe–Praktische Anwendung," Düsseldorf: VDI, 1987
[32] L. Piegl and W. Tiller, "The NURBS book," Heidelberg, Berlin, Springer-Verlag, 1995.
[33] J. Kennedy and R. Eberhart, "Particle swarm optimization," ICNN'95- International Conference on Neural Networks, IEEE, vol. 4, 1995, pp. 1942-1948.
[34] M. Hu, T. Wu, and J. D. Weir, "An adaptive particle swarm optimization with multiple adaptive methods," IEEE Transactions on Evolutionary Computation, vol. 17, no. 5, 2013, pp. 705-720.
[35] M. A. Arasomwan and A. O. Adewumi, "On adaptive chaotic inertia weights in particle swarm optimization," 2013 IEEE Symposium on Swarm Intelligence, IEEE, 2013, pp. 72-79.

QR CODE