簡易檢索 / 詳目顯示

研究生: Uzair Ali Khan
Uzair Ali Khan
論文名稱: 關於細胞的介電泳數值研究
Numerical investigation in dielectrophoresis of biological cells
指導教授: 曾修暘
Hsiu-Yang Tseng
口試委員: 鄭逸琳
Yih-Lin Cheng
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 94
外文關鍵詞: Contactless Dielectrophoresis, Planar electrodes, deflection, pDEP, nDEP
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • In this thesis, a thorough exploration of dielectrophoresis phenomena is conducted, starting with the design and analysis of a 2D microchannel for contactless dielectrophoresis (cDEP) processes to observe various parameters affecting cell deflection. Subsequently, a 3D planar electrode design is developed, and critical factors influencing the cell deflection rate are calculated with a novel approach of pitch calculation. The study further delves into significant parameters such as electrode pitch, angles, voltages, cell types (cell diameter, conductivity, permeability, etc.), and frequencies. Additionally, the behavior of positive (pDEP) and negative (nDEP) dielectrophoresis in planar electrodes concerning cell deflection and its direction has been explored by analyzing a simplified model with only two electrodes. The obtained results yield valuable insights into comprehending cell deflection while traversing planar electrodes. The results reveal that the DEP force exerts influence on the planar electrodes in both directions. It acts as an attractive force for pDEP cases on both sides, making the latter electrode more influenced by DEP force compared to the preceding electrode.
    Consequently, the deflection caused by the later electrode is notably higher than that of the former one. Conversely, in nDEP cases, it manifests as a repulsive force on both sides. The results shows that the first electrode is the most affected by the DEP force compared to the other electrodes. The initial electrode pushes the cell upwards, causing the cells to experience less DEP force on the subsequent electrodes. Hence, the deflection caused by the first electrode is maximum in nDEP mechanism. This revelation of force interaction contributes significantly to the field of dielectrophoresis research, shedding light on aspects previously unexplored by researchers.

    Table of Contents Chapter 1 Introduction 11 1.1 The Significance of Cancer and Its Societal Impact 11 1.2 Cancer Research: A Quest to Overcome the Disease 11 1.3 Microfluidics: A transformative technology 12 1.4 Applications of Microfluidics in Addressing Cancer 13 1.5 Dielectrophoresis: A Powerful Tool in Microfluidics 14 1.6 - Mechanisms of Dielectrophoresis in Cancer Cell Sorting 17 1.7 Types of Dielectrophoresis Techniques 19 1.8 Utilizing simulation Software in Dielectrophoresis and particle sorting 22 Chapter 2 Problem statement & Computational methodology 27 2.1 Problem statement 27 2.2 Methodology and computation settings 28 2.2.1 laminar flow model 29 2.2.2 Electric field module 31 2.2.3 Dielectrophoresis Theory 31 2.2.4 Particle tracing module 35 2.2.5 Geometrical setup 36 2.2.6 Grid Independency 37 Chapter 3 Validation 40 Chapter 4 Results and discussion 43 4.1 Model I 43 4.1.1 Influence of voltage 44 4.1.2 Influence of frequency 45 4.1.3 Influence of Inlet 1(Cell inlet) velocity 46 4.1.4 Influence of Inlet 2(buffer inlet) velocity 49 4.1.5 Influence of Channel length(L) 52 4.1.6 Influence of Electrode horizontal positions (b) 56 4.1.7 Influence of cell diameter 58 4.1.8 Influence of Electrode Vertical Position (distance from the top of the channel) (h) 61 4.1.9 Influence of electrode shape 64 4.2 Planar electrode analysis 65 4.2.1 Novel approach to calculate the pitch of the electrodes 66 4.2.2 Model Geometry 67 4.2.3 Calculation of cell deflection using vertical distance to horizontal (dy/dx) 68 4.2.4 Influence of different parameters (optimized result) 68 4.2.5 Influence of different cell properties 70 4.2.6 Influence of different pitches at angle 10° 71 4.2.7 Influence of different pitches at angle 30° 72 4.2.8 Influence of different pitches at angle 45° 73 4.2.9 Influence of different all angles 74 4.2.10 Influence of different voltages 75 4.2.12 Influence for different frequencies 76 4.2.13 Comparison of average of dy/dx for different widths 77 4.2.14 Fully electrode filled channel 78 4.2.15 Comparison of pDEP from nDEP mechanism 79 4.2.16 Micro level study of particle trajectory for two electrodes (nDEP and pDEP) 80 Chapter 5 Conclusion and Future work 87 References 90

    [1] Z. Çağlayan Arslan, Y. Demircan Yalçın, and H. Külah, “Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis,” Electrophoresis, vol. 43, no. 13–14, pp. 1531–1544, Jul. 2022, doi:10.1002/elps.202100318.
    [2] C. G. Roehrborn and L. K. Black, “The economic burden of prostate cancer,” BJU Int, vol. 108, no. 6, pp. 806–813, Sep. 2011, doi: 10.1111/j.1464-410X.2011.10365.x.
    [3] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next generation,” Cell, vol. 144, no. 5. pp. 646–674, Mar. 04, 2011. doi:10.1016/j.cell.2011.02.013.
    [4] M. Tu, D. Chia, F. Wei, and D. Wong, “Liquid biopsy for detection of actionable oncogenic mutations in human cancers and electric field induced release and measurement liquid biopsy (eLB),” Analyst, vol. 141, no. 2. Royal Society of Chemistry, pp. 393–402, Jan. 21, 2016. doi: 10.1039/c5an01863c.
    [5] J. A. Doudna and E. Charpentier, “The new frontier of genome engineering with CRISPR-Cas9.” [Online]. Available: https://www.science.org
    [6] G. A. Masters et al., “Clinical cancer advances 2015: Annual report on progress against cancer from the American society of clinical oncology,” in Journal of Clinical Oncology, American Society of Clinical Oncology, Mar. 2015, pp. 786–809. doi:10.1200/JCO.2014.59.9746.
    [7] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101. pp. 368–373, Jul. 27, 2006. doi: 10.1038/nature05058.
    [8] M. J. Madou, B. Raton, L. New, and Y. Washington, “The Science of Miniaturization Second Edition CRC PRESS.”
    [9] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, no. 7491. Nature Publishing Group, pp. 181–189, 2014. doi: 10.1038/nature13118.
    [10] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer J Clin, vol. 61, no. 2, pp. 69–90, Mar. 2011, doi:10.3322/caac.20107.
    [11] R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,” CA Cancer J Clin, vol. 61, no. 4, pp. 212–236, Jul. 2011, doi:10.3322/caac.20121.
    [12] Z. Zhang and S. Nagrath, “Microfluidics and cancer: Are we there yet?,” Biomed Microdevices, vol. 15, no. 4, pp. 595–609, Aug. 2013, doi: 10.1007/s10544-012-9734-8.
    [13] F. Alexis, J. W. Rhee, J. P. Richie, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad, “New frontiers in nanotechnology for cancer treatment,” Urologic Oncology: Seminars and Original Investigations, vol. 26, no. 1. pp. 74–85, Jan. 2008. doi: 10.1016/j.urolonc.2007.03.017.
    [14] J. Den Toonder, “Circulating tumor cells: The Grand Challenge,” Lab on a Chip, vol. 11, no. 3. Royal Society of Chemistry, pp. 375–377, Feb. 07, 2011. doi:10.1039/c0lc90100h.
    [15] R. T. Krivacic et al., “A rare-cell detector for cancer,” 2004. [Online]. Available:www.pnas.orgcgi .doi:10.1073pnas.0404036101.
    [16] J. R. Heath and M. E. Davis, “Nanotechnology and cancer,” Annual Review of Medicine, vol. 59. pp. 251–265, 2008. doi:10.1146/annurev.med.59.061506.185523.
    [17] Weinberg, R.A., & Weinberg, R.A. (2007). The Biology of Cancer (1st ed.). W.W. Norton & Company. https://doi.org/10.1201/9780203852569
    [18] A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst, vol. 144, no. 1. Royal Society of Chemistry, pp. 87–113, Jan. 07, 2019. doi:10.1039/c8an01061g.
    [19] M. A. Saucedo-Espinosa and B. H. Lapizco-Encinas, “Particle Concentration Effect On Dielectrophoretic Trapping.”doi:https://api.semanticscholar.org/CorpusID:214735519
    [20] E. A. Henslee, “Review: Dielectrophoresis in cell characterization,” Electrophoresis, vol. 41, no. 21–22. Wiley-VCH Verlag, pp. 1915–1930, Nov. 01, 2020. doi:10.1002/elps.202000034.
    [21] P. Tajik, M. S. Saidi, N. Kashaninejad, and N. T. Nguyen, “Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles,” Ind Eng Chem Res, vol. 59, no. 9, pp. 3772–3783, Mar. 2020, doi:10.1021/acs.iecr.9b00771.
    [22] E. A. Henslee, “Review: Dielectrophoresis in cell characterization,” Electrophoresis, vol. 41, no. 21–22. Wiley-VCH Verlag, pp. 1915–1930, Nov. 01, 2020. doi: 10.1002/elps.202000034.
    [23] H. Zhang, H. Chang, and P. Neuzil, “DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms,” Micromachines, vol. 10, no. 6. MDPI AG, Jun. 01, 2019. doi:10.3390/mi10060423.
    [24] N. Piacentini, G. Mernier, R. Tornay, and P. Renaud, “Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation,” Biomicrofluidics, vol. 5, no. 3, 2011, doi: 10.1063/1.3640045.
    [25] F. De Luca et al., “Oncotarget 26107 ww.impactjournals.com/oncotarget Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer.” [Online]. Available:www.impactjournals.com/oncotarget/
    [26] A. S. Rzhevskiy et al., “Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics,” Cancers (Basel), vol. 12, no. 1, Jan. 2020, doi: 10.3390/cancers12010081.
    [27] N. A. M. Yunus, H. Nili, and N. G. Green, “Continuous separation of colloidal particles using dielectrophoresis,” Electrophoresis, vol. 34, no. 7, pp. 969–978, 2013, doi: 10.1002/elps.201200466.
    [28] Y. Yildizhan, N. Erdem, M. Islam, R. Martinez-Duarte, and M. Elitas, “Dielectrophoretic separation of live and dead monocytes using 3D carbonelectrodes,” Sensors (Switzerland), vol. 17, no. 11, Nov. 2017, doi:10.3390/s17112691.
    [29] R. Martinez-Duarte, “Microfabrication technologies in dielectrophoresis applicationsA review,” Electrophoresis, vol. 33, no. 21. Wiley-VCH Verlag, pp. 3110–3132, 2012. doi: 10.1002/elps.201200242.
    [30] J. Zhang, Z. Song, Q. Liu, and Y. Song, “Recent advances in dielectrophoresis-based cell viability assessment,” Electrophoresis, vol. 41, no. 10–11. Wiley-VCH Verlag, pp. 917–932, Jun. 01, 2020. doi: 10.1002/elps.201900340.
    [31] P. Y. Chu, C. H. Hsieh, C. R. Lin, and M. H. Wu, “The effect of optically induced dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system on the properties of biological cells,” Biosensors (Basel), vol. 10, no. 6, Jun. 2020, doi:10.3390/BIOS10060065.
    [32] “User´s Guide Comsol Multiphysics ®.” [Online]. Available:
    www.comsol.com/support/knowledgebase
    [33] R. Tornay et al., “Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles,” Lab Chip, vol. 8, no. 2, pp. 267–273, 2008, doi: 10.1039/b713776a.
    [34] R. L. Hewlin and M. Edwards, “Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis,” Curr Issues Mol Biol, vol. 45, no. 4, pp. 3048–3067, Apr. 2023, doi: 10.3390/cimb45040200.
    [35] H. Miyamukai, I. Yagi, S. Uchida, M. Takano, Y. Wakizaka, and T. Enjoji, “Basic verification of cancer cell separation characteristics in a dielectrophoretic device using microcylindrical electrodes,” Electronics and Communications in Japan, vol. 104, no. 4, Dec. 2021, doi: 10.1002/ecj.12328.
    [36] N. V. Nguyen, T. Le Manh, T. S. Nguyen, V. T. Le, and N. Van Hieu, “Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel,” Journal of Science: Advanced Materials and Devices, vol. 6, no. 1, pp. 11–18, Mar. 2021, doi:10.1016/j.jsamd.2020.11.002.
    [37] F. Alnaimat, B. Mathew, and A. Alazzam, “Simulation of a microfluidic device employing dielectrophoresis for liquid biopsy,” Med Eng Phys, vol. 81, pp. 130–135, Jul. 2020, doi:10.1016/j.medengphy.2020.05.017.
    [38] W. S. Low and N. A. Kadri, “Computational analysis of enhanced circulating tumour cell (CTC) separation in a microfluidic system with an integrated dielectrophoreticmagnetophorectic (DEP-MAP) technique,” Chemosensors, vol. 4, no. 3, Sep. 2016, doi: 10.3390/chemosensors4030014.
    [39] T. Sarowar, M. S. Islam, and X. Chen, “Separation of CTCs from Blood Cells using Curved Contraction-Expansion Microchannel Equipped with Dep Force Use of Advanced Ceramic Materials in Mini Heat Exchangers View project IMECE2023-Draft seperation of CTCs from blood cells using curved contraction-expansion microchannel equipped with DEP force” [Online]. Availablehttps://www.researchgate.net/publication/370325744
    [40] V. Varmazyari, H. Habibiyan, H. Ghafoorifard, M. Ebrahimi, and S. Ghafouri-Fard, “A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-16286-0.
    [41] X. Zhang, X. Xu, Y. Ren, Y. Yan, and A. Wu, “Numerical simulation of circulating tumor cell separation in a dielectrophoresis based Y-Y shaped microfluidic device,” Sep Purif Technol, vol. 255, Jan. 2021, doi:10.1016/j.seppur.2020.117343.
    [42] W. N. W. Yahya, N. A. Kadri, and F. Ibrahim, “Design and numerical analysis of interdigitated radiating-strips electrode for uniform 3D dielectrophoretic patterning of liver cells,” Microsystem Technologies, vol. 25, no. 8, pp. 3037–3045, Aug. 2019, doi:10.1007/s00542-018-4258-7.
    [43] N. V. Nguyen, H. Van Manh, and N. Van Hieu, “Numerical simulation-based performance improvement of the separation of circulating tumor cells from bloodstream in a microfluidic platform by dielectrophoresis,” Korea Australia Rheology Journal, vol. 34, no. 4, pp. 335–347, Nov. 2022, doi: 10.1007/s13367-022-00039-6.
    [44] S. Praveenkumar, S. N. Srigitha, R. G. Dinesh, and R. Ramesh, “Computational Modeling of Dielectrophoretic Microfluidic Channel for Simultaneous Separation of Red Blood Cells and Platelets,” Curr Signal Transduct Ther, vol. 15, no. 3, pp. 243–251, Nov. 2018, doi: 10.2174/1574362413666181102113636.
    [45] N. V. Nguyen, T. Le Manh, T. S. Nguyen, V. T. Le, and N. Van Hieu, “Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel,” Journal of Science: Advanced Materials and Devices, vol. 6, no. 1, pp. 11–18, Mar. 2021, doi:10.1016/j.jsamd.2020.11.002.
    [46] A. Dalili, H. Montazerian, K. Sakthivel, N. Tasnim, and M. Hoorfar, “Dielectrophoretic manipulation of particles on a microfluidics platform with planar tilted electrodes,” Sens Actuators B Chem, vol. 329, Feb. 2021, doi:10.1016/j.snb.2020.129204.
    [47] Y. Huang, R. Holzel, R. Pethig, and B. Wang, “Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies,” 1992.
    [48] H. Hadady, D. Redelman, S. R. Hiibel, and E. J. Geiger, “Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis,” AIMS Biophys, vol. 3, no. 3, pp. 398–414, 2016, doi:10.3934/biophy.2016.3.398.

    無法下載圖示 全文公開日期 2026/01/30 (校內網路)
    全文公開日期 2026/01/30 (校外網路)
    全文公開日期 2026/01/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE