簡易檢索 / 詳目顯示

研究生: 陳信助
Sin-Jhu Chen
論文名稱: 結合半控後級穩壓之不對稱半橋轉換器
Semi-Controlled Post-Regulated Asymmetrical Half-Bridge Converter
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 王金標
Jin-Biao Wang
黃仲欽
Jong-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 116
中文關鍵詞: 多組輸出後級穩壓柔性切換不對稱半橋轉換器
外文關鍵詞: multiple outputs, post-regulation, soft-switching, asymmetrical half-bridge converter
相關次數: 點閱:235下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因具有柔性切換和低電壓應力,不對稱半橋轉換器適合應用在高頻電源供應器之直流-直流功率轉換級。但此轉換器有一些缺點例如整流二極體具有不均勻耐壓、變壓器直流偏磁、輕載難以零電壓切換以及控制的穩定度問題。為了改善上述缺點,本文依序建議了幾種方法。首先,一次側固定操作在責任週期接近於0.5之工作點,並使用前緣調變之同步開關後級穩壓器(SSPR)來調節輸出電壓。搭配此方法之不對稱半橋轉換器具有全範圍零電壓切換、無直流偏磁問題、整流二極體有相同耐壓、較低輸出電流漣波以及較佳之動態響應。
    對於輸入範圍300~400V之直流-直流功率轉換應用場合,本文接著提出半控後級穩壓(semi-controlled SSPR)之不對稱半橋轉換器來提升上述電路之轉換效率。此轉換器可進一步搭配不平衡二次側繞組,提供了一個對單組輸出功率轉換之完整解決方案。
    此外,對於需要精確調節之多組輸出應用場合,本文亦提出了交錯式半控後級穩壓 (interleaved semi-controlled SSPR)之方法,並可獲得較低之ㄧ次側RMS電流與獨立精準之多組輸出電壓調節。為了驗證以上多種電路之可行性,本文進行了SIMPLIS電路模擬與硬體實作。最後,本文利用同步整流技術將提出的半控後級穩壓之不對稱半橋轉換器做更進一步的效率提升。


    Due to having soft-switching operation and low voltage stress on semiconductor devices, the asymmetrical half-bridge converter (AHBC) is suitable for high frequency off-line DC/DC power conversion applications. However, it possesses several limitations such as asymmetrical stress on rectifiers, existing DC-bias magnetizing current, loss of ZVS operation at light-load, and the stability issue of the feedback control. To alleviate these drawbacks, several configurations are suggested step by step. Firstly, a fixed duty cycle (near 50%) operation with leading-edge synchronous-switch post-regulator (SSPR) is suggested as an alternative control scheme. It features full-range ZVS, zero DC-bias magnetizing current, symmetrical voltage stress, low output current ripple, and better dynamic response.
    Next, the AHBC with semi-controlled SSPR is proposed to improve the efficiency for the 300~400V input ranges in off-line DC/DC. Thirdly, unbalanced secondary windings are applied to the proposed converter, providing a comprehensive solution for single-output applications.
    Moreover, for the multi-output applications requiring tight regulation performance, a multi-output AHBC with interleaved semi-controlled SSPR is also studied to achieve lower primary-side RMS current and to provide independent and precise regulation for multiple outputs. To demonstrate the feasibility of all proposed configurations, this study performs SIMPLIS simulation and hardware experiment validation. Finally, this work implements synchronous rectification to further improve the efficiency of proposed AHBC with semi-controlled SSPR.

    Abstract I Acknowledgements II Table of Contents III List of Figures VI List of Tables XI Chapter 1 Introduction 1 1-1 Background 1 1-2 Problems of the Asymmetrical Half-Bridge Converter 3 1-3 Objectives of the Thesis 7 1-4 Organization of the Thesis 8 Chapter 2 SSPR Controlled Asymmetrical Half-Bridge Converter with Fixed Duty Cycle 9 2-1 Introduction 9 2-2 Synchronous-Switch Post-Regulator 10 2-3 Operation Principle 12 2-4 Circuit Analysis 14 2-4-1 Symmetrical Secondary-Side Duty Cycle Operation 14 2-4-2 ZVS Operation 17 2-4-3 Power Transformer Design 22 2-5 Simulation and Experimental Results 23 2-5-1 Circuit Design 23 2-5-1 Simulation Results 24 2-5-2 Experimental Results 26 2-6 Summary 29 Chapter 3 Semi-Controlled SSPR and Unbalanced Secondary Windings 31 3-1 Introduction 31 3-2 Semi-Controlled SSPR 32 3-3 Unbalanced Secondary Windings 34 3-3-1 DC-Bias Magnetizing Current 37 3-3-2 Output Current Ripple 37 3-3-3 Minimum Load Requirement 40 3-3-4 Loss of SSPR 40 3-3-5 Primary-Side RMS Current 42 3-4 Operation Principle 43 3-5 Circuit Analysis 45 3-5-1 ZVS Condition 45 3-5-2 Small-Signal Model 45 3-6 Design Consideration for Unbalanced Secondary Windings 50 3-7 Simulation and Experimental Results 52 3-7-1 Circuit Design 52 3-7-2 Simulation Results 53 3-7-3 Experimental Results 55 3-8 Summary 59 Chapter 4 Multi-Output Asymmetrical Half-Bridge Converter with Interleaved Semi-Controlled SSPR 62 4-1 Introduction 62 4-2 Interleaved Semi-Controlled SSPR Configuration 62 4-3 Operation Principle 63 4-4 Circuit Analysis 66 4-4-1 DC-Bias Magnetizing Current 66 4-4-2 Primary-Side RMS Current 67 4-4-3 ZVS Operation 68 4-5 Circuit Design and Implementation 69 4-5-1 Power Transformer Design 70 4-5-2 Circuit Implementation 70 4-6 Experimental Results 73 4-6-1 Notch Phenomenon and Transformer Winding Arrangements 73 4-6-2 Regulation Performance and Efficiency 77 4-7 Efficiency Improvement: Synchronous Rectification 80 4-7-1 Loss Analysis 80 4-7-2 Synchronous Rectification 81 4-7-3 Efficiency Improvement 83 4-8 Summary 84 Chapter 5 Conclusions and Future Researches 86 5-1 Conclusions 86 5-2 Future Researches 87 References 89 Appendix A: Figures plotted by MathCAD 93 Vita 101

    [1] P. Imbertson and N. Mohan, “New PWM converter circuits combining zero switching loss with low conduction loss,” IEEE INTELEC’90, pp. 179-185, 1990.
    [2] S. Korotkov, V. Meleshin, R. Miftahutdinov, and S. Fraidlin, “Soft-Switched Asymmetrical Half Bridge DC-DC Converter: Steady State Analysis: An Analysis of Switching Process,” IEEE Telescon’97, pp. 177-184, 1997.
    [3] R. Oruganti, P. C. Heng, J. T. K. Guan, and L. A. Choy, “Soft-switched DC/DC Converter with PWM Control,” IEEE Trans. Power Electronics, vol. 13, no. 1, pp. 102-114, Jan. 1998.
    [4] B. Yang, “Topology Investigation for Front End DC-DC Power Conversion for Distributed Power System,” PhD thesis, Virginia Polytechnic Institute and State University, 2003.
    [5] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half- Bridge Converter,” IEEE PESC’01, vol. 1,pp.243-247, Jun. 2001.
    [6] S. Korotkov, V. Meleshin, A. Nemchinov, and S. Fraidlin, “Small-signal modeling of soft-switched asymmetrical half-bridge dc/dc converter,” IEEE APEC’95, pp. 707–711, Mar. 1995.
    [7] E. F. Linear, J. Sebastian, M. A. Perez Garcia, J. Diaz, and A. Fontan, “Closing the feedback loop in the half-bridge complementary-control dc-to-dc converter,” IEEE APEC’97, pp. 977–982, 1997.
    [8] B. Choi, W. Lim, S. Bang, and S. Choi, “Small-signal analysis and control design of asymmetrical half-bridge DC-DC converters,” IEEE Trans. Industrial Electronics, vol. 53, no. 2, pp. 511–520, Apr. 2006.
    [9] W. Eberle and Y.F. Liu, “A Zero Voltage Switching Asymmetrical Half-Bridge DC/DC Converter With Unbalanced Secondary Windings for Improved Bandwidth,” IEEE PESC’02, Vol. 4, pp. 1829-1834, 2002.
    [10] R. Miftakhutdinov, A. Nemchinov, V. Meleshin, and S. Fraidlin, ”Modified asymmetrical ZVS half-bridge dc-dc converter,” IEEE APEC’99, pp.567-574, 1999.
    [11] W. Chen, P. Xu, and F.C. Lee, "The optimization of asymmetric half bridge converter," IEEE APEC’01, vol.2, pp.703-707, 2001.
    [12] Y. H. Leu and C. L. Chen, “Improved asymmetrical half-bridge converter using a tapped output inductor filter,” Electric Power Applications, IEE Proceedings, vol. 150, no. 4, pp. 417–424, Jul. 2003.
    [13] B. Yang, P. Xu, and F. C. Lee, "Range winding for wide input range front end DC-DC converter," IEEE APEC’01, pp.476-479, 2001.
    [14] C. Jamerson, “Post regulation techniques for 100 kHz to 300 kHz multiple-output PWM supplies (limitations, trends, and predictions),” HFPC 1989 Proceedings, pp. 260-273, 1989.
    [15] Y. Lin and K. H. Liu, “A new synchronous switch post regulator for multi-output forward converters,” IEEE APEC’90, pp. 693–696, 1990.
    [16] C. Jamerson, T. Long, “Design techniques for synchronous-switch post regulators,” HFPC 1993 Proceedings, pp. l0-20, 1993.
    [17] G. Levin, “A new secondary side post regulator (SSPR) PWM controller for multiple output power supplies,” IEEE APEC’95, vol. 2, pp. 736–742, 1995.
    [18] X. Wang, F. Tian, and I. Batarseh., "High Efficiency Parallel Post Regulator for Wide Range Input DC–DC Converter," IEEE Trans. Power Electronics, vol.23, no.2, pp.852-858, March, 2008.
    [19] R. Ridley “11 Ways to generate multiple outputs,” Switching Power Magazine, Vol 4, Issue 2, pp 6-21, 2003.
    [20] R. L. Steigerwald and J. S. Glaser, "A soft-switched secondary-side post regulator," IEEE APEC’04, vol. 2, pp. 1055-1059, 2004.
    [21] E.-H. Kim, J.-J. Lee, J.-M. Kwon, W.-Y. Choi and B.-H. Kwon, "Asymmetrical PWM half-bridge convertor with independently regulated multiple outputs," Electric Power Applications, IEE Proceedings, vol.153, no.1, pp. 14-22, 1 Jan. 2006.
    [22] ON Semiconductor "Secondary Side Post Regulator (SSPR) for Switching Power Supplies with Multiple Outputs” CS 5101 Application Note.
    [23] S.-S. Lee, S.-K. Han, and G.-W. Moon, “Analysis and design of asymmetrical ZVS PWM half bridge forward converter with flyback type transformer,” IEEE’PESC04, vol. 2, pp. 1525–1530, 2004.
    [24] J. H. Liang, P. C. Wang, K. C. Huang, C. L. Chen, Y. H. Leu, and T. M. Chen, “Design optimization for asymmetrical half-bridge converters,” IEEE APEC’01, vol. 2, pp. 697–702, 2001.
    [25] Q. Chen, F. C. Lee, and M. M. Jovanovic, “Analysis and design of weighted voltage-mode control for a multiple-output forward converter” IEEE APEC’93, pp. 449-455, March, 1993.
    [26] Y. Xi and P. K. Jain, “A forward converter topology with independently and precisely regulated multiple outputs,” IEEE Trans. Power Electronics., vol. 18, no. 2, pp. 648–658, Mar. 2003.
    [27] S. Ertike and D. Yildirim, “A new control scheme for multi-output forward converters,” IEEE PESC’07, pp. 207-213, 2007.
    [28] L. H. Dixon, “"Transformer and inductor design for optimum circuit performance,” Unitrode/TI Power Seminar, 2003, TI Literature No.SLUP205.
    [29] X. Li and R. Oruganti, “Soft-switched dc/dc converter with synchronous rectifiers,” IEEE INTELEC’96, pp. 476–484, 1996.
    [30] X. Xuefei, C. H. Yan, and M. H. Pong, “Studies of self-driven synchronous rectification in low voltage power conversion,” IEEE PEDS’99, vol. 1, pp. 212–217, 1999.
    [31] S. Havanur, “Combining synchronous rectification and post regulation for multiple isolated outputs,” IEEE APEC’04, pp. 872–877, 2004.
    [32] L. H. Dixon, “Section 4. Power Transformer Design,” Unitrode/TI Magnetics Design Handbook, 2000, Topic 3, TI Literature No.SLUP132.
    [33] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
    [34] R.W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed, Kluwer Academic Publishers, 2001.
    [35] C. P. Basso, Switch-Mode Power Supplies, The McGraw-Hill Companies, 2008.
    [36] A. I. Pressman, Switching Power Supply Design, 2/e, The McGraw-Hill Companies, Inc. International Editions, 1999.
    [37] “SIMPLIS reference manual” Catena software Ltd.
    http://www.catena.uk.com/site/downloads/manuals.htm
    [38] “Users manual” Catena software Ltd.
    http://www.catena.uk.com/site/downloads/manuals.htm

    QR CODE