簡易檢索 / 詳目顯示

研究生: 陳玠君
Chieh-Chun Chen
論文名稱: 支援資料提前傳輸的窄頻物聯網系統隨機存取通道優化
Optimization of Random Access Channels in NB-IoT Systems Supporting Early Data Transmission
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 任芳慶
Fang-Ching Ren
許獻聰
Shiann-Tsong Sheu
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 79
中文關鍵詞: 窄頻物聯網資料提前傳輸資料傳輸塊
外文關鍵詞: EDT, non-EDT, Optimal TBS
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

窄頻物聯網是由第三代合作夥伴(The Third Generation Partnership Project, 3GPP)於版本 13 中所訂定的一種基於長期演進技術標準(Long Term Evolution, LTE)的蜂巢式物聯網技術。窄頻物聯網通常應用於低吞吐量且低移動性的情況,例如偶爾傳送小數據封包的感測器網路。為了提高用戶設備端的性能,3GPP 在版本 15 中提出一機制稱作資料提前傳輸 (Early Data Transmission, EDT)。當上行數據大小小於或等於資料傳輸塊 (Transport Block Size, TBS)時,用戶設備可以啟用EDT機制,並在隨機存取過程中提前完成上行數據的傳輸。反之,當上行數據大小大於TBS時, 用戶設備會以原本的方式進行資料傳輸(non-EDT)。因此,在大量用戶設備連接的情況下,資料傳輸的延遲與連接時的碰撞會分別成為EDT 與non-EDT機制的代價。考慮到分別以EDT及non-EDT機制進行傳輸資料的用戶設備數量之間的權衡,我們根據不同的網路設置條件情況提出最佳化的TBS,網路設置條件包含最大封包長度、總用戶設備數量及隨機存取通道的子載波數量。本研究依據分析所估計出的效能指標,並使用窮舉法為每個給定的配置條件找到最佳化的TBS。且透過模擬結果驗證分析結果的正確性,由其數值結果所得的最佳化TBS可以最大化總成功傳輸數據的用戶設備數目及最小化平均資料傳輸延遲。


Narrowband Internet of Things (NB-IoT) is a cellular IoT technology based on Long Term Evolution (LTE), and introduced by 3GPP (The Third Generation Partnership Project) in Release 13. The use cases of NB-IoT are usually for the low throughput with low mobility, such as sensor network which have infrequent small data packet transmissions. To improve the performance of sensor-like user equipment (UE), 3GPP introduced a mechanism named Early Data Transmission (EDT) in Release 15. UE can enable the EDT procedure when the uplink data size less than or equal to Transport Block Size (TBS), and complete the data transmission during the random-access procedure without the transition to connected mode. Otherwise, UE would transmit the data by following the conventional (non-EDT) procedure when the uplink data size larger than TBS. Therefore, under the massive connections, the collision and data delay would be the price for the EDT and non-EDT procedure, respectively. Taking into account the tradeoff between the number of EDT UE and non-EDT UE, we propose the optimal TBS depending on the various network conditions, including the maximum packet length, number of contention UE and the number of subcarriers in random access channels. Based on the performance estimation of NB-IoT system supported EDT mechanism, we used the exhaustive search method to find the optimal TBS for each configuration setting. The accuracy of the analysis is verified by computer simulations and the numerical results show that the proposed optimal TBS is able to maximize the total number of successfully accessing UE or minimize the average total data delay.

摘要 Abstract Table of Contents List of Figures List of Tables Chapter I. Introduction Chapter II. System Model Chapter III. Analytical Model Chapter IV. Optimization Model Chapter V. Numerical Results Chapter VI. Conclusion Reference

[1] Ericsson (2021). Ericsson Mobility Report. November 2021. Retrieved Jun. 2021 from https://www.ericsson.com/en/mobility-report/reports/june-2021
[2] Shi, Y. (2019). Power saving methods for LTE-M and NB-IoT devices White paper, Rohde&Schwarz, 1-28. Retrieved Feb. 2020 from https://www.rohde-schwarz.com/fi/solutions/test-and-measurement/wireless-communication/iot-m2m/whitepaper-power-saving-lte-m-nb-iot-register_251417.html
[3] S. -H. Hwang and S. -Z. Liu, "Survey on 3GPP Low Power Wide Area Technologies and its Application," 2019 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 2019, pp. 1-5, doi: 10.1109/VTS-APWCS.2019.8851631.
[4] Díaz Zayas, Almudena & Tocado, Francisco & Rodriguez, Pilar. (2020). Evolution and Testing of NB-IoT Solutions. Applied Sciences. 10. 7903. 10.3390/app10217903.
[5] Schlienz, J., & Raddino, D. (2016). Narrowband internet of things whitepaper. White Paper, Rohde&Schwarz, 1-42. Retrieved Feb. 2020 from https://www.rohde-schwarz.com/appnote/1MA266
[6] Mwakwata, C. B., Malik, H., Mahtab Alam, M., Le Moullec, Y., Parand, S., & Mumtaz, S. (2019). Narrowband Internet of Things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors, 19(11), 2613.
[7] 3GPP TS 36.321, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification", V15.8.0, Jan. 2020
[8] 3GPP TS 36.331, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification", V15.8.0, Jan. 2020.
[9] 3GPP TS 36.213, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures", V15.7.0, Oct. 2019.
[10] 3GPP TS 36.211, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation", V15.11.0, Nov. 2020.
[11] M. Kanj, V. Savaux and M. Le Guen, "A Tutorial on NB-IoT Physical Layer Design," in IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2408-2446, Fourthquarter 2020, doi: 10.1109/COMST.2020.3022751.
[12] 3GPP TR 36.888, "Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE", V12.0.0, Jun. 2013.
[13] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz and J. M. Lopez-Soler, "A Survey on 5G Usage Scenarios and Traffic Models," in IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 905-929, Secondquarter 2020, doi: 10.1109/COMST.2020.2971781.
[14] R2-1711978, "LS on Early Data Transmission," Qualcomm.
[15] R1-1706895, "Early data transmission for NB-IoT," Ericsson.
[16] 3GPP TS 36.300, "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2", V16.5.0, Apr. 2021.
[17] A. Hoglund, D. P. Van, T. Tirronen, O. Liberg, Y. Sui and E. A. Yavuz, “3GPP Release 15 Early Data Transmission,” in IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 90-96, JUNE 2018, doi: 10.1109/MCOMSTD.2018.1800002.
[18] R2-1713058, "Evaluation for Early Data Transmissions," Ericsson.
[19] C. Wei, P. Lin and R. Cheng, " An Efficient Random Access Scheme for OFDMA Systems with Implicit Message Transmission'," in IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 414-415, January 2013, doi: 10.1109/TWC.2012.112012.120872.
[20] Y. Choi, Suho Park and Saewoong Bahk, "Multichannel random access in OFDMA wireless networks," in IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 603-613, March 2006, doi: 10.1109/JSAC.2005.862422.
[21] R. Mozny, P. Masek, M. Stusek, K. Zeman, A. Ometov and J. Hosek, “On the Performance of Narrow-band Internet of Things (NB-IoT) for Delay-tolerant Services,” 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 2019, pp. 637-642, doi: 10.1109/TSP.2019.8768871.
[22] C. Wei, R. Cheng and S. Tsao, "Performance Analysis of Group Paging for Machine-Type Communications in LTE Networks," in IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 3371-3382, Sept. 2013, doi: 10.1109/TVT.2013.2251832.
[23] C. Wei, G. Bianchi and R. Cheng, "Modeling and Analysis of Random Access Channels With Bursty Arrivals in OFDMA Wireless Networks," in IEEE Transactions on Wireless Communications, vol. 14, no. 4, pp. 1940-1953, April 2015, doi: 10.1109/TWC.2014.2377121.
[24] C. Wei, R. Cheng and S. Tsao, "Modeling and Estimation of One-Shot Random Access for Finite-User Multichannel Slotted ALOHA Systems," in IEEE Communications Letters, vol. 16, no. 8, pp. 1196-1199, August 2012, doi: 10.1109/LCOMM.2012.060112.120376.
[25] R. Cheng, F. M. Al-Taee, J. Chen and C. Wei, "A Dynamic Resource Allocation Scheme for Group Paging in LTE-Advanced Networks," in IEEE Internet of Things Journal, vol. 2, no. 5, pp. 427-434, Oct. 2015, doi: 10.1109/JIOT.2015.2435655.
[26] R. Harwahyu, R. Cheng, W. Tsai, J. Hwang and G. Bianchi, "Repetitions Versus Re-transmissions: Tradeoff in Configuring NB-IoT Random Access Channels," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3796-3805, April 2019, doi: 10.1109/JIOT.2019.2891366.
[27] H. Bello, X. Jian, Y. Wei and M. Chen, "Energy-Delay Evaluation and Optimization for NB-IoT PSM With Periodic Uplink Reporting," in IEEE Access, vol. 7, pp. 3074-3081, 2019, doi: 10.1109/ACCESS.2018.2888566.
[28] Melnik, Roderick V. Nicholas. "Dynamic system evolution and Markov chain approximation." Discrete Dynamics in Nature and Society 2.1 (1998): 7-39.
[29] S. Z. Khan, M. M. Alam, Y. Le Moullec, A. Kuusik, S. Pärand and C. Verikoukis, "An Empirical Modelling for the Baseline Energy Consumption of an NB-IoT Radio Transceiver," in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2021.3072769.
[30] R. Harwahyu, R. -G. Cheng, D. -H. Liu and R. F. Sari, "Fair Configuration Scheme for Random Access in NB-IoT with Multiple Coverage Enhancement Levels," in IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1408-1419, 1 April 2021, doi: 10.1109/TMC.2019.2962422.

無法下載圖示 全文公開日期 2031/09/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE