簡易檢索 / 詳目顯示

研究生: 陳暻葳
Jing-Wei CHEN
論文名稱: 窄頻物聯網系統之增強型時間前置隨機存取程序的效能分析
Performance Analysis of Enhanced Timing Advance based Random Access Procedure for NB-IoT Systems
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 許獻聰
Shiann-Tsong Sheu
黃琴雅
Chin-Ya Huang
王瑞堂
Jui-Tang Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 96
中文關鍵詞: 窄頻物聯網隨機存取程序時間前置傳送機制
外文關鍵詞: NB-IoT, random access procedure, timing advance
相關次數: 點閱:292下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網是第三代合作夥伴(3rd Generation Partnership Project , 3GPP)計劃用於支援廣域物聯網的標準,甚至作為第五代行動通訊網路(Fifth Generation Mobile Networks, 5G)中大規模機器型通訊(Massive Machine-Type Communications , mMTC)項目的基礎。在窄頻物聯網系統中,本篇論文提出一可相容於 3GPP 標準中的隨機程序之時間前置機制改良型隨機存取程序架構(enhanced timing advance based random access procedure, eTARA)。eTARA此改良型架構,利用物聯網裝置定點特性,在傳統隨機存取機制中增加裝置的可辨析性,來提升隨機存取的競爭成功率。同時分散式與集中式決策演算法,來解決多重路徑的誤差影響。此外,改良型架構透過自我放棄機制,減少裝置平均在隨機存取程序中的傳送次數,增加成功機率。本研究透過數學分析與模擬程式,比較時間前置機制傳統架構與改良型架構的表現差異,並驗證實際效益。


    This paper considers a narrowband Internet of Things (NB-IoT) system supporting fixed location IoT devices. We proposed an enhanced timing-advance random-access (eTARA) scheme to relieve the congestion of the random-access channels resulted from simultaneous access triggered by massive IoT devices. Each device can utilize the proposed scheme to adjust its admissible timing advance (TA) zone for disabling unnecessary MSG3 retransmission. The collisions can be reduced as result. An analytical model is further presented to estimate the success probability and average access delay of the proposed scheme and optimize the configuration parameters.

    論文摘要..............................................................3 Abstract.............................................................4 致謝..................................................................5 Table of Contents.....................................................6 List of Figures.......................................................8 List of Tables........................................................11 Chapter I Introduction.............................................12 Chapter II System Model............................................18 A.NB-IoT Timing-Advance Random-Access Procedure (TARA)................22 B.Multipath effect....................................................23 C.NB-IoT enhanced Timing-Advance Random-Access Procedure (eTARA)......24 Chapter III Decision Methodology...................................26 A.Implementation of eTARA scheme......................................26 B.Centralized eTARA decision algorithm................................28 C.Distributed eTARA decision algorithm................................29 Chapter IV Analytical Model........................................32 A.TARA analytical model considering multipath effect..................37 B.eTARA with multipath effect delay spread factor.....................41 C.Performance metrics.................................................47 D.Analysis of centralized decision algorithm..........................52 E.Analysis of distributed decision algorithm..........................53 Chapter V Numerical Result.........................................56 A.Discussion on existing eTARA computer simulation result.............59 B.TARA procedure with existing multipath effect.......................61 C.eTARA procedure with existing multipath effect......................67 D.Supplementary results...............................................81 Chapter VI Conclusion...............................................92 Reference.............................................................93

    [1] 3GPP TS 36.331, “Radio resource control (RRC) protocol specification,”
    V13.2.0, June 2016.
    [2] 3GPP TS 36.321, “Medium access control (MAC) protocol specification,”
    V13.2.0, June 2016.
    [3] 3GPP TS 36.213, “Physical layer procedures,” V13.2.0, June 2016.
    [4] Z. Wang and V. W. S. Wong, "Joint access class barring and timing advance model for machine-type communications," 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, 2014, pp. 2357-2362.
    [5] Z. Wang and V. W. S. Wong, "Optimal Access Class Barring for Stationary Machine Type Communication Devices With Timing Advance Information," in IEEE Transactions on Wireless Communications, vol. 14, no. 10, pp. 5374-5387, Oct. 2015.
    [6] G. Lin, S. Chang and H. Wei, "Estimation and Adaptation for Bursty LTE Random Access," in IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 2560-2577, April 2016.
    [7] S. Beom Seo, W. S. Jeon and D. G. Jeong, "A dual preamble random access protocol for reducing access congestion in disaster situations," 2017 19th International Conference on Advanced Communication Technology (ICACT), Bongpyeong, 2017, pp. 121-127.
    [8] S. Vural, N. Wang, G. Foster and R. Tafazolli, "Success Probability of Multiple-Preamble-Based Single-Attempt Random Access to Mobile Networks," in IEEE Communications Letters, vol. 21, no. 8, pp. 1755-1758, Aug. 2017.
    [9] P. Zhou, H. Hu, H. Wang and H. Chen, "An efficient random access scheme for OFDMA systems with implicit message transmission," in IEEE Transactions on Wireless Communications, vol. 7, no. 7, pp. 2790-2797, July 2008.
    [10] C. Wei, R. Cheng and S. Tsao, "Performance Analysis of Group Paging for Machine-Type Communications in LTE Networks," in IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 3371-3382, Sept. 2013.
    [11] 3GPP R2-104870, "Pull based RAN overload control," Huawei and China Unicom, RAN2#71, Aug. 2010.
    [12] I. Oppermann, J. Talvitie and D. Hunter, "Wide-band wireless local loop channel for urban and sub-urban environments at 2 GHz," Proceedings of ICC'97 - International Conference on Communications, Montreal, Quebec, Canada, 1997, pp. 61-65 vol.1.
    [13] T. S. Rappaport, S. Y. Seidel and R. Singh, "900-MHz multipath propagation measurements for US digital cellular radiotelephone," in IEEE Transactions on Vehicular Technology, vol. 39, no. 2, pp. 132-139, May 1990.
    [14] 3GPP TS 36.211, “Physical channels and modulation,” V13.2.0, June 2016.
    [15] E. S. Sousa, V. M. Jovanovic and C. Daigneault, "Delay spread measurements for the digital cellular channel in Toronto," in IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 837-847, Nov. 1994.
    [16] J. F. Kepler, T. P. Krauss and S. Mukthavaram, "Delay spread measurements on a wideband MIMO channel at 3.7 GHz," Proceedings IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 2002, pp. 2498-2502 vol.4.
    [17] A. Kanatas, N. Moraitis, G. Pantos and P. Constantinou, "Wideband characterization of microcellular suburban mobile radio channels at 1.89 GHz," Proceedings IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 2002, pp. 1060-1064 vol.2.
    [18] 3GPP TS 36.304, “User equipment (UE) procedures in idle mode,” V13.2.0, July 2016.
    [19] A. Hunt, A. DeGabriele, J. Roth, J. A. Blanco, T. Owens Walker and J. Martin, "Effects of channel environment on timing advance for mobile device positioning in long-term evolution networks," 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2016, pp. 643-647.
    [20] K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim and J. Y. Ahn, "A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems," in IEEE Communications Letters, vol. 16, no. 9, pp. 1428-1431, September 2012.
    [21] C. Wei, R. Cheng and S. Tsao, "Modeling and Estimation of One-Shot Random Access for Finite-User Multichannel Slotted ALOHA Systems," in IEEE Communications Letters, vol. 16, no. 8, pp. 1196-1199, August 2012.

    QR CODE