簡易檢索 / 詳目顯示

研究生: 史沐傑
Mu-Jie Shih
論文名稱: 仿生霧收集石墨烯壓電薄膜於同時產水與發電之應用
Application of Biomimetic Fog Collecting Graphene Piezoelectric Membranes in Simultaneous Water Production and Power Generation
指導教授: 洪維松
Wei-Song Hung
口試委員: 賴君義
Juin-Yih Lai
劉英麟
Ying-Ling Liu
胡蒨傑
Chien-Chieh Hu
王志逢
‪Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 石墨烯薄膜壓電表面潤濕性霧收集
外文關鍵詞: surface wettability, fog harvesting
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著人口增加、工業發展,對水和能源的需求也不斷增加。在許多發展中國家與乾旱地區,水資源與能源的短缺因全球暖化的影響已逐漸加劇。收集霧氣中的水分被認為是一種解決水資源短缺的方法,空氣流動所產生的風更是一種無汙染、永續的能源。然而目前霧收集以獲得乾淨、可飲用的水資源為主,鮮少有人
結合風力發電,進行同時產水發電之應用。
本研究受自然界中沙漠甲蟲的啟發,設計並製備了一種能同時取水發電的仿生霧收集石墨烯壓電薄膜,能靠自然界的霧氣取水同時依靠自然界的風來發電。本研究將 PVDF 與石墨烯以及離子液共混,藉由添加石墨烯增加薄膜導電性,並利用離子液誘導 PVDF 結晶由α相結晶自組裝成具有壓電性質的β相結晶,製備出 PVDF-石墨烯/離子液壓電薄膜,XRD 的結果顯示加入離子液之後 PVDF 中的結晶峰由 20.1°α相轉換成 20.6°的β相結晶。接著,我們選用三種親水性高分子聚乙烯醇、幾丁聚醣、海藻酸鈉與一種疏水高分子聚二甲基矽氧烷,利用網版印刷在石墨烯壓電薄膜表面塗布不同陣列尺寸的高分子陣列仿生結構,並探討不
同陣列尺寸與高分子的親疏水性對霧氣水收集效率的影響。
實驗結果指出,離子液添加量為 1.5wt%的壓電薄膜具有最好的壓電性能,電壓輸出可達 6.5 伏特。我們發現以幾丁聚醣做為塗佈的親水陣列材料,在陣列網點直徑為 0.2 mm 的尺寸下所獲得的水收集效率最佳,高達 0.63 LMH。基於上述的最適化發電與水收集效率的薄膜,我們進行了整合的可行性評估,發現在 4 m/s 的風速下,水收集效率為 0.74 LMH、平均發電功率為 163.09 nW。
基於上述研究結果,我們證實了單一薄膜利用霧跟風作為驅動,達到同時產水與產電的目的,這對於未來開發次世代功能性薄膜提供新的研究方向。


As the world’s population increases and industries develop, so does the demand for water and energy. In many developing countries and arid regions, water and energy
shortages have been exacerbated by the effects of global warming. Harvesting moisture
from mist is considered a solution to water shortages, and wind generated by air
movement is a pollution-free, sustainable energy source. However, at present, fog
collection is mainly used to obtain clean and drinkable water resources, and few people combine wind power generation for the application of simultaneous water production and power generation.
Inspired by desert beetles in nature, this study designed and fabricated a
biomimetic fog-collecting graphene piezoelectric membrane that can simultaneously
produce water and generate electricity. It can draw water from natural fog and generate electricity by relying on natural wind.
In this study, PVDF was blended with graphene and ionic liquid. Graphene was
added to increase the conductivity of the membrane and the ionic liquid induced PVDF
crystallization to self-assemble from α-phase crystals to β-phase crystals with
piezoelectric properties, resulting to a PVDF- graphene/ionic liquid piezoelectric
membrane. XRD results show that the crystallization peak in PVDF is transformed from
20.1° α phase to 20.6° β phase crystal after adding ionic liquid.
Next, we selected three hydrophilic polymers: poly(vinyl alcohol) (PVA), chitosan,
sodium alginate; and one hydrophobic polymer: polydimethylsiloxane (PDMS), and
they were coated on the graphene piezoelectric membrane surface with different array
sizes by screen printing. The biomimetic structure of the polymer array was investigated, as well as the effect of different array sizes and the hydrophilicity and hydrophobicity of the polymer on the collection efficiency of fog water.
The experimental results show that the piezoelectric membrane with the addition of 1.5wt% ionic liquid has the best piezoelectric performance and the voltage output
can reach up to 6.5V. We found that the hydrophilic array material coated with chitosan achieved the best water collection efficiency of up to 0.63 LMH at the size of the array dot diameter of 0.2 mm.
Based on the above-mentioned membranes optimized for efficient power generation and water collection, we performed an integrated feasibility assessment and found that at a wind speed of 4 m/s, the water collection efficiency was 0.74 LMH and the average power generation was 163.09 nW.
Based on the above research results, we confirmed that a single membrane uses fog to follow the wind as a driving force to achieve the purpose of producing water and generating electricity at the same time, which provides a new research direction for the development of next-generation functional membranes in the future.

摘要 I Abstract II 目錄 IV 圖目錄 V 表目錄 VIII 第一章 緒論 1 1-1前言 1 1-2 水處裡薄膜材料 11 1-3 壓電薄膜材料 14 1-4 文獻回顧 16 1-5 研究動機與目的 22 第二章 實驗材料與方法 23 2-1 實驗藥品 23 2-2 實驗儀器 24 2-3 實驗步驟 25 2-4 物理鑑定 27 2-5 化學鑑定 28 2-6 電性鑑定 30 2-7 薄膜效能檢測 32 第三章 結果與討論 35 3-1 物理鑑定 35 3-2 化學鑑定 39 3-3 電性鑑定 43 3-4 薄膜效能檢測 46 第四章 結論 52 參考文獻 53

1. Al-Zubari, W. Water, energy, and food nexus in the Arab region. Annual Conference of the Arab Forum for Environment and Development Sustainable Energy: Prospects, Challenges, Opportunities (2013).
2. W. Wilson, T. Leipzig & B. Griffiths-Sattenspiel, Burning our rivers: The water footprint of electricity, River Network, Publication, 62 (Austin, TX: Comptroller of Public Accounts, Data Division Services, 2012).
3. EA, E. EEA air pollutant emission inventory guidebook—2009. European Environment Agency (EEA), Copenhagen (2009).
4. Pan, S.-Y., Snyder, S. W., Packman, A. I., Lin, Y. J. & Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 1, 26–41 (2018).
5. M. M. Mekonnen, A. Y. Hoekstra, Four Billion People Facing Severe Water Scarcity, Sci. Adv., 2016, 2, 1500323.
6. S. P Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, S. M. Mahurin, Water Desalination Using Nanoporous Single-Layer Graphene, Nat. Nanotechnol., 2015, 10 (5), 459– 564.
7. WWAP (United Nations World Water Assessment Programme). Water for a Sustainable World; The United Nations World Water Development Report, UNESCO:Paris, 2015; 1– 67.
8. ESCWA (Economic and Social Commission for Western Asia), Energy options for water desalination in selected ESCWA member countries, United Nations, New York (2001 November).
9. D. Curto, V. Franzitta, A. Guercio, A Review of the Water Desalination Technologies, Appl. Sci., 2021, 11, 670.
10. A. Belmiloudi, Heat Transfer: Theoretical Analysis, Experimental Investigations and Industrial Systems, BoD-Books on Demand, 2011.
11. I Al-Mutaz, A. Al-Namlah, Characteristic of dual purpose MSF desalination plants, Desalination, 166 (2004), 287-294.
12. Buros, O.K. The ABCs of Desalting; International Desalination Association: Topsfield, MA, USA, 2000.
13. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews, 24 (2013) 343-356.
14. Helfer, F.; Lemckert, C.; Anissimov, Y.G. Osmotic power with Pressure Retarded Osmosis: Theory, performance and trends—A review. J. Membr. Sci. 2014, 453, 337–358.
15. Greiter, M.; Novalin, S.; Wendland, M.; Kulbe, K.; Fischer, J. Electrodialysis versus ion exchange: Comparison of the cumulative energy demand by means of two applications. J. Membr. Sci. 2004, 233, 11–19.
16. Shatat, M.; Riffat, S.B. Water desalination technologies utilizing conventional and renewable energy sources. Int. J. Low-Carbon Technol. 2014, 9, 1–19.
17. B. Wang, X. Zhou, Z. Guo, W. Liu, Recent advances in atmosphere water harvesting: Design principle, materials, devices, and applications, Nano Today, 40 (2021), 101283.
18. H. Zhu, Z. Guo Hybrid engineered membrane materials with high water-collecting efficiency inspired by Namib Desert beetles, Chem. Commun.,52 (41) (2016), pp.6809-6812.
19. Y. Zheng, H. Bai, Z. Huang, et al. Directional water collection on wetted spider silk, Nature, 463 (7281) (2010), 640-643.
20. X. Li, Y. Yang, L. Liu, et al. 3D‐Printed cactus‐inspired spine structures for highly efficient water collection, Advanced Materials Interfaces, 7 (3) (2019), 1901752.
21. S. Zhang, J. Huang, Z. Chen, Y. Lai, Bioinspired special wettability surfaces: from fundamental research to water harvesting applications, Small, 13 (2017), 1602992.
22. L. Zhu, M. Gao, C.K.N. Peh, X. Wang, G.W. Ho, Self-Contained Monolithic Carbon Sponges for Solar-Driven Interfacial Water Evaporation Distillation and Electricity Generation, Adv. Energy Mater., 8 (2018), 1702149.
23. Q. Shen, et al., An open thermo-electrochemical cell enabled by interfacial evaporation, J. Mater. Chem. A, 7 (11) (2019), 6514.
24. X. Li, et al., Data assimilation of soil water flow by considering multiple uncertainty sources and spatial–temporal features: a field-scale real case study, Joule, 2 (11) (2018), 2477.
25. M. Gao, C.K. Peh, H.T. Phan, L. Zhu, G.W. Ho, Solar Absorber Gel: Localized Macro-Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation, Adv. Energy Mater., 8 (2018), 1800711.
26. P. Yang, K. Liu, Q. Chen, J. Li, J. Duan, G. Xue, Z. Xu, W. Xie, J. Zhou, Solar-driven simultaneous steam production and electricity generation from salinity, Energy Environ. Sci., 10 (2017), 1923-1927.
27. P. Xiao, et al., Exploring interface confined water flow and evaporation enables solar-thermal-electro integration towards clean water and electricity harvest via asymmetric functionalization strategy, Nano Energy, 68 (2020).
28. L. Cui, et al., High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture, Adv. Mater., 30 (22) (2018), 1706805.
29. W. Wang, et al., Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation, Nat. Commun., 10 (1) (2019), 3012.
30. N. Xu, et al., Synergistic Tandem Solar Electricity-Water Generators, Joule, 4 (2) (2020), 347.
31. R. Li, et al., Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle, Nat. Sustain. (2020).
32. T. Ding, Y. Zhou, W.L. Ong, G.W. Ho, Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization, Mater. Today, 42 (2021), 178-191.
33. G. Xue, Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, L. Gong, J. Chen, S. Deng, J. Zhou, W. Guo, Nat. Nanotechnol. 2017, 12, 317.
34. F. H. J. van der Heyden, D. Stein, C. Dekker, Phys. Rev. Lett. 2005, 95, 116104.
35. F. H. J. van der Heyden, D. Stein, K. Besteman, S. G. Lemay, C. Dekker, Phys. Rev. Lett. 2006, 96, 224502.
36. L. Joly, C. Ybert, E. Trizac, L. Bocquet, Phys. Rev. Lett. 2004, 93, 257805.
37. F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Adv. Mater. 2015, 27, 4351.
38. Shen, D., Duley, W. W., Peng, P., Xiao, M., Feng, J., Liu, L., Zou, G., Zhou, Y. N., Moisture-Enabled Electricity Generation: From Physics and Materials to Self-Powered Applications. Adv. Mater. 2020, 32, 2003722.
39. D. Shen, M. Xiao, G. Zou, L. Liu, W. W. Duley, Y. N. Zhou, Adv. Mater. 2018, 30, 1705925.
40. T. Zhong, H. Guan, Y. Dai, H. He, L. Xing, Y. Zhang, X. Xue, Nano Energy 2019, 60, 52.
41. H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Nano Energy 2018, 45, 37.
42. L. Atzori, A. Iera, G. Morabito, Comput. Networks 2010, 54, 2787.
43. Z. Sun, X. Wen, L. Wang, D.X. Ji, X. H. Qin, J. Y. Yu, S. Ramakrishna, Emerging design principles, materials, and applications for moisture-enabled electric generation, eScience, 2(2022), 32-46.
44. T.S. Chung, X. Li, R.C. Ong, Q. Ge, H. Wang, G. Han, Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications, Curr. Opin. Chem. Eng., 1 (3) (2012), 246-257.
45. S.E. Skilhagen, J.E. Dugstad, R.J. Aaberg, Osmotic power-power production based on the osmotic pressure difference between waters with varying salt gradients, Desalination, 220 (2008), 476-482.
46. K. Gerstandt, K.V. Peinemann, S.E. Skilhagen, T. Thorsen, T. Holt, Membrane processes in energy supply for an osmotic power plant, Desalination, 224 (2008), 64-70.
47. T. Thorsen, T. Holt, The potential for power production from salinity gradients by pressure retarded osmosis, J Membr Sci, 335 (2009), 103-110.
48. C. Zhang, L. Wu, J. Ma, M. Wang, J. Sun, T.D. Waite, Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters, Water Res., 173 (2020), Article 115580.
49. J. Ma, P. Liang, X. Sun, H. Zhang, Y. Bian, F. Yang, J. Bai, Q. Gong, X. Huang Energy recovery from the flow-electrode capacitive deionization. J. Power Sources, 421 (2019), 50-55.
50. F. Liu, O. Coronell, D.F. Call Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis. J. Power Sources, 355 (2017), 206-210.
51. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (6043) (2011), 712-717.
52. Membrane materials for water purification: design, development, and application, Environmental Science: Water Research & Technology, 2016.
53. K. A. DeFriend, M. R. Wiesner and A. R. Barron, Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles, J. Membr. Sci., 2003, 224, 11–28.
54. P.S. Goh, A review on inorganic membranes for desalination and wastewater treatment, Desalination (2017).
55. M. Drobek, C. Yacou, J. Motuzas, A. Julbe, L. Ding, J.C. Diniz da Costa, Long term pervaporation desalination of tubular MFI zeolite membranes, J. Membr. Sci., 415–416 (2012), 816-823.
56. H.C. “Joe” Zhou, S. Kitagawa, Metal–organic frameworks (MOFs), Chem. Soc. Rev., 43 (2014), 5415-5418.
57. W. Li, S. Henke, A.K. Cheetham, Research update: mechanical properties of metal-organic frameworks - influence of structure and chemical bonding, APL Mater., 2 (2014).
58. N. Yin, K. Wang, L. Wang, Z. Li, Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal, Chem. Eng. J., 306 (2016), 619-628.
59. D. C. Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation, Desalination, 366 (2015), 59-70.
60. N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, C. Gao, A review of graphene-based separation membrane: materials, characteristics, preparation and applications, Desalination, 437 (2018), 59-72.
61. T. Shibutani, T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe and H. Matsuyama, Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives, J. Membr. Sci., 376 (2011), 102–109.
62. F. Soyekwo, Q. G. Zhang, C. Deng, Y. Gong, A. M. Zhu and Q. L. Liu, Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction, J. Membr. Sci., 454 (2014), 339–345.
63. E. Saljoughi and S. M. Mousavi, Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water, Sep. Purif. Technol., 90 (2012), 22–30.
64. H. R. Lohokare, M. R. Muthu, G. P. Agarwal and U. K. Kharul, Effective arsenic removal using polyacrylonitrile-based ultrafiltration (UF) membrane, J. Membr. Sci., 2008, 320, 159–166.
65. 賴君義, 薄膜科技概論 Introduction to membrane science and technology. 2019, 臺北市: 五南圖書出版股份有限公司.
66. E. Yuliwati and A. F. Ismail, Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment, Desalination, 2011, 273, 226–234.
67. F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed and K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci., 2011, 375, 1–27.
68. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015), 256-275.
69. S. Roundy and P. K. Wright, Smart Mater. Struct. 13(5), 1131–1142 (2004).
70. S. R. Anton and H. A. Sodano, Smart Mater. Struct. 16(3), R1–R21 (2007).
71. H. Li, C. Tian, and Z. D. Deng, Energy harvesting from low frequency applications using piezoelectric materials, Applied Physics Reviews 1(2014), 041301.
72. H. Guo, X. Li, Z. Wang, J. Wang, S. Wang, Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field, Chin. J. Chem. Eng., 26 (2018), 1213-1218.
73. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride), Polymers (Basel), 10 (2018), 228.
74. X. Wang, B. Qiao, S. Tan, W. Zhu, Z. Zhang, Tuning the ferroelectric phase transition of PVDF by uniaxially stretching crosslinked PVDF films with CF [double bond, length as m-dash] CH bonds, J. Mater. Chem. C, 8 (2020), 11426-11440.
75. K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 490 (2012), 192-200.
76. F. Mokhtari, M. Latifi, M. Shamshirsaz, J. Text. Inst. 2016, 107, 1037.
77. H. J. Ye, W. Z. Shao, L. Zhen, Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized baTiO3 nanoparticles, J. Appl. Polym. Sci. 2013, 129, 2940.
78. S. Mishra, L. Unnikrishnan, S. Kumar Nayak, S. Mohanty, Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review, Macromol. Mater. Eng. 2019, 304, 1800463.
79. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures, Nano Energy 2019, 55, 516.
80. T. U. Patro, M. V. Mhalgi, D. V. Khakhar,Studies on poly (vinylidene fluoride)–clay nanocomposites: effect of different clay modifiers, A. Misra, Polymer 2008, 49, 3486.
81. D. Shah, P. Maiti, E. Gunn, D. F. Schmidt, D. D. Jiang, C. A. Batt, E. P. Giannelis, Dramatic Enhancements in Toughness of Polyvinylidene Fluoride Nanocomposites via Nanoclay-Directed Crystal Structure and Morphology, Adv. Mater. 2004, 16, 1173.
82. L. Priya, J. P. Jog, Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: Crystallization and dynamic mechanical behavior studies, J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1682.
83. M. Benz, W. B. Euler, O. J. Gregory, The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride), Macromolecules 2002, 35, 2682.
84. H. Sasaki, P. K. Bala, H. Yoshida, E. Ito, MISCIBILITY OF PVDF/PMMA BLENDS EXAMINED BY CRYSTALLIZATION DYNAMICS, Polymer 1995, 36, 4805.
85. S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Formation Mechanism of beta-Phase in PVDF/CNT Composite Prepared by the Sonication Method, Macromolecules 2009, 42, 8870.
86. K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators, Nano Energy 2018, 52, 153.
87. A. Mandal, A. K. Nandi, Ionic Liquid Integrated Multiwalled Carbon Nanotube in a Poly(Vinylidene Fluoride) Matrix: Formation of a Piezoelectric β-Polymorph with Significant Reinforcement and Conductivity Improvement. ACS Appl. Mater. Interfaces 2013, 5, 747–760.
88. L.H. He, J. Sun, X.X. Wang, C.D. Wang, R. Song, Y.M. Hao, Facile and effective promotion of crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids, Polym. Int., 62 (2013), 638-646.
89. J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2, Chem. Rev., 111 (2011), 3508-3576.
90. X.Z. Wang, X.G. Li, J. Yue, Y.M. Cheng, K. Xu, Q. Wang, F. Fan, Z.H. Wang, Z.L. Cui, Fabrication of poly (vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent, Chin. J. Chem. Eng., 28 (2020), 1415-1423.
91. K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 490 (2012), 192-200
92. J. d. D. Rivera, Aerodynamic collection efficiency of fog water collectors, Atmos. Res., 2011, 102, 335.
93. J. Olivier, C. J. d. Rautenbach, The implementation of fog water collection systems in South Africa, Atmos. Res., 2002, 64, 227.
94. E. Kostal, S. Stroj, S. Kasemann, V. Matylitsky, M. Domke, Fabrication of biomimetic fog-collecting superhydrophilic−superhydrophobic surface micropatterns using femtosecond lasers, Langmuir, 34 (2018), 2933-2941.
95. Y. C. Wang, L. B. Zhang, J. B. Wu, M. N. Hedhili and P. Wang, A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting, J. Mater. Chem. A, 2015, 3, 18963.
96. B. Wang, Y. B. Zhang, W. X. Liang, G. Y. Wang, Z. G. Guo and W. M. Liu, A simple route to transform normal hydrophilic cloth into a superhydrophobic-superhydrophilic hybrid surface, J. Mater. Chem. A, 2014, 2, 7845.
97. Y. Gao, J. Wang, W. Xia, X. Mou, Z. Cai, Reusable hydrophilic-superhydrophobic patterned weft backed woven fabric for high-efficiency water-harvesting application, ACS Sustain. Chem. Eng., 6 (2018), 7216-7220.
98. Y. Wang, X. Wang, C. Lai, H. Hu, Y. Kong, B. Fei, J.H. Xin, Biomimetic water-collecting fabric with light-induced superhydrophilic bumps, ACS Appl. Mater. Interfaces, 8 (2016), 2950-2960.
99. Z. Yu, F.F. Yun, Y. Wang, L. Yao, S. Dou, K. Liu, L. Jiang, X. Wang, Desert beetle-inspired superwettable patterned surfaces for water harvesting, Small, 13 (2017), 1701403.
100. C. Xu, R. Feng, F. Song, X. Wang, Y. Wang, Desert beetle-inspired superhydrophilic/superhydrophobic patterned cellulose film with efficient water collection and antibacterial performance, ACS Sustain. Chem. Eng., 6 (2018), 14679-14684.
101. C. Wen, H. Guo, H. Bai, T. Xu, M. Liu, J. Yang, Y. Zhu, W. Zhao, J. Zhang, M. Cao, L. Zhang, Beetle-inspired hierarchical antibacterial interface for reliable fog harvesting, ACS Appl. Mater. Interfaces, 11 (2019), 34330-34337.
102. J. Knapczyk-Korczak, D.P. Ura, M. Gajek, M.M. Marzec, K. Berent, A. Bernasik, J.P. Chiverton, U. Stachewicz, Fiber-based composite meshes with controlled mechanical and wetting properties for water harvesting, ACS Appl. Mater. Interfaces, 12 (2020), 1665-1676.
103. L. B. Zhang, J. B. Wu, M. N. Hedhili, X. L. Yang and P. Wang, Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces, J. Mater. Chem. A, 2015, 3, 2844.
104. D. Zahner, J. Abagat, F. Svec, J. M. J. Fr’echet and P. A. Levkin, A Facile Approach to Superhydrophilic–Superhydrophobic Patterns in Porous Polymer Films, Adv. Mater., 2011, 23, 3030.
105. H. Bai, L. Wang, J. Ju, R. Sun, Y. Zheng, L. Jiang, Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns, Adv. Mater., 26 (2014), 5025-5030.
106. X. Heng, M. Xiang, Z. Lu, C. Luo, Branched ZnO Wire Structures for Water Collection Inspired by Cacti, ACS Appl. Mater. Interfaces 2014, 6, 8032.
107. J. Ju, X. Yao, S. Yang, L. Wang, R. Sun, Y. He, L. Jiang, Cactus stem inspired cone-arrayed surfaces for efficient fog collection, Adv. Funct. Mater., 24 (2014), 6933-6938.
108. M. Cao, J. Ju, K. Li, S. Dou, K. Liu, L. Jiang, Facile and large-scale fabrication of a cactus-inspired continuous fog collector, Adv. Funct. Mater., 24 (2014), 3235-3240.
109. X. Li, Y. Yang, L. Liu, Y. Chen, M. Chu, H. Sun, W. Shan, Y. Chen, 3D-printed cactus-inspired spine structures for highly efficient water collection, Adv. Mater. Interfaces, 7 (2019), 1901752.
110. Y.-Y. Song, Y. Liu, H.-B. Jiang, S.-Y. Li, C. Kaya, T. Stegmaier, Z.-W. Han, L.-Q. Ren, Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport, Nanoscale, 10 (2018), 3813-3822.
111. H. Zhu, Z. Guo and W. Liu, Biomimetic water-collecting materials inspired by nature, Chem. Commun., 2016, 52, 3863 —3879.
112. Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai and L. Jiang, Directional water collection on wetted spider silk, Nature, 2010, 463, 640.
113. H. Bai, J. Ju, R. Z. Sun, Y. Chen, Y. M. Zheng and L. Jiang, Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks, Adv. Mater., 2011, 23, 3708
114. Y. Tian, P. Zhu, X. Tang, C. Zhou, J. Wang, T. Kong, M. Xu, L. Wang, Large-scale water collection of bioinspired cavity-microfibers, Nat. Commun., 8 (2017), 1080.
115. C. Li, Y. Liu, C. Gao, X. Li, Y. Xing, Y. Zheng, Fog harvesting of a bioinspired nanocone-decorated 3D fiber network, ACS Appl. Mater. Interfaces, 11 (2019), 4507-4513.
116. B.S. Lalia, S. Anand, K.K. Varanasi, R. Hashaikeh, Fog-harvesting potential of lubricant-impregnated electrospun nanomats, Langmuir, 29 (2013), 13081-13088.
117. X. Dai, N. Sun, S.O. Nielsen, B.B. Stogin, J. Wang, S. Yang, T.S. Wong, Hydrophilic directional slippery rough surfaces for water harvesting, Sci. Adv., 4 (2018), 0919.
118. R. Feng, C. Xu, F. Song, F. Wang, X. Wang, Y. Wang, A bioinspired slippery surface with stable lubricant impregnation for efficient water harvesting, ACS Appl. Mater. Interface, 12 (2020), 12373-12381.
119. X. Jing, Z. Guo, Durable lubricant-impregnated surfaces for water collection under extremely severe working conditions, ACS Appl. Mater. Interfaces, 11 (2019), 35949-35958.
120. )J. Ju, Y. Zheng, L. Jiang, Bioinspired One-Dimensional Materials for Directional Liquid Transport, Acc. Chem. Res. 2014, 47, 2342.
121. C. Yu, C. Li, C. Gao, Z. Dong, L. Wu, L. Jiang, Time-dependent liquid transport on a biomimetic topological surface, ACS Nano, 12 (2018), 5149-5157.
122. N.L. Panwar, S.C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: a review, Renew Sustain Energy Rev, 15 (2011), 1513-1524.
123. E. Lantz, R. Wiser, M. Hand, The Past and Future Cost of Wind Energy; NREL/TP-6A20-53510, National Renewable Energy Laboratory, Golden, CO (2012).
124. L. Hirth, The benefits of flexibility: the value of wind energy with hydropower, Appl Energy, 181 (2016), 210-223.
125. X. Zhang, C. Ma, X. Song, Y. Zhou, W. Chen, The impacts of wind technology advancement on future global energy, Appl Energy, 184 (2016), 1033-1037.
126. M. Bryant, E. Garcia, Modeling and testing of a novel aeroelastic flutter energy harvester, J Vib Acoust, 133 (2011), 11010.
127. M. Bryant, E. Wolff, E. Garcia, Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters, Smart Mater Struct, 20 (2011), 125017.
128. J.A. Dunnmon, S.C. Stanton, B.P. Mann, E.H. Dowell, Power extraction from aeroelastic limit cycle oscillations, J Fluids Struct, 27 (2011), 1182-1198.
129. S. Li, J. Yuan, H. Lipson, Ambient wind energy harvesting using cross-flow fluttering, J Appl Phys, 109 (2011), 26104.
130. J.D. Hobeck, D.J. Inman, Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration, Smart Mater Struct, 21 (2012), 105024.
131. J.D. Hobeck, D.J. Inman, A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration, Smart Mater Struct, 23 (2014), 115003.
132. Y. Yang, L. Zhao, L. Tang, Comparative study of tip cross-sections for efficient galloping energy harvesting, Appl Phys Lett, 102 (2013), 64105.
133. H. J. Jung, S. W. Lee, The experimental validation of a new energy harvesting system based on the wake galloping phenomenon, Smart Mater Struct, 20 (2011), 55022.
134. S. Li, H. Lipson, Vertical-stalk flapping-leaf generator for wind energy harvesting, ASME 2009 Conf. Smart Mater. Adapt. Struct. Intell. Syst., American Society of Mechanical Engineers (2009), 611-619.
135. M.A. McCloskey, C.L. Mosher, E.R. Henderson, Wind energy conversion by plant-inspired designs, PLoS One, 12 (2017), 0170022.
136. J.M. McCarthy, S. Watkins, A. Deivasigamani, S.J. John, F. Coman, An investigation of fluttering piezoelectric energy harvesters in off-axis and turbulent flows, J Wind Eng Ind Aerodyn, 136 (2015), 101-113.
137. D. Kim, J. Cossé, C. Huertas Cerdeira, M. Gharib, Flapping dynamics of an inverted flag, J Fluid Mech, 736 (2013), R1.
138. K. Shoele, R. Mittal, Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag, J Fluid Mech, 790 (2016), 582-606.
139. P.S. Gurugubelli, R.K. Jaiman, Self-induced flapping dynamics of a flexible inverted foil in a uniform flow, J Fluid Mech, 781 (2015), 657-694.
140. S. Orrego, K. Shoele, A. Ruas, K. Doran, B. Caggiano, R. Mittal, et al., Harvesting ambient wind energy with an inverted piezoelectric flag, Appl Energy, 194 (2017), 212-222.
141. X. Liu, B. He, Z. Wang, H. Tang, T. Su, Q. Wang, Tough nanocomposite ionogel-based actuator exhibits robust performance, Sci. Rep., 4 (2014), 6673-6679.
142. E. Gontarek-Castro, M.K. Rybarczyk, R. Castro-Munoz, M. Morales-Jimenez, B. Barragan-Huerta, M. Lieder, Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity, Water-Sui 13 (2021) 1279.
143. P.Z. Bei, H.J. Liu, H. Yao, Y. Jiao, Y.Y. Wang, L.Y. Guo, Preparation and characterization of a PVDF membrane modified by an ionic liquid, Aust. J. Chem., 72 (2019), 425-433.
144. I.S. Bayer, Superhydrophobic coatings from ecofriendly materials and processes: a review, Adv. Mater. Interfaces, 7 (2020), 2000095.
145. J. Widakdo, Y.H. Chiao, Y.L. Lai, A.C. Imawan, F.M. Wang and W.S. Hung, Mechanism of a Self-Assembling Smart and Electrically Responsive PVDF–Graphene Membrane for Controlled Gas Separation, ACS Appl. Mater. Interfaces, 2020, 12, 30915 —30924.
146. Z. Zeng, D. Yu, Z. He, J. Liu, F.X. Xiao, Y. Zhang, R. Wang, D. Bhattacharyya, T.T. Tan, Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances, Sci. Rep., 6 (2016), 20142.
147. T.T.V. Tran, S.R. Kumar, S.J. Lue, Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: donnan effect and intermolecular interaction, J. Membr. Sci., 575 (2019), 38-49.
148. M. Mohammadi Ghaleni, A. Al Balushi, S. Kaviani, E. Tavakoli, M. Bavarian, S. Nejati, Fabrication of Janus membranes for desalination of oil-contaminated saline water, ACS Appl. Mater. Interfaces, 10 (2018), 44871-44879.
149. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol., 221 (2012), 351-358.
150. X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, S. Yao, Z. Wang, Nanograssed micropyramidal architectures for continuous dropwise condensation, Adv. Funct. Mater. (2011), 4617-4623.
151. K.-C. Park, S. S. Chhatre, S. Srinivasan, R. E. Cohen, G. H. McKinley, Optimal Design of Permeable Fiber Network Structures for Fog Harvesting, Langmuir 2013, 29, 13269.
152. B. Tang, Reduced Graphene Oxide Membranes: Applications in Fog Collection and Water Purification, KAUST Research Repository (2017).
153. J. Guo, W. Huang, Z. G. Guo, W. M. Liu, Design of a Venation-like Patterned Surface with Hybrid Wettability for Highly Efficient Fog Harvesting, Nano Lett. 2022, 22, 3104.
154. B. Wang, Y. Zhang, W. Liang, G. Wang, Z. Guo, W. Liu, A simple route to transform normal hydrophilic cloth into a superhydrophobic–superhydrophilic hybrid surface, J. Mater. Chem. A 2014, 2, 7845.
155. J. Knapczyk-Korczak, P.K. Szewczyk, D.P. Ura, K. Berent, U. Stachewicz, Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency, RSC Adv, 10 (2020), 22335-22342.
156. V.A. Ganesh, A.S. Ranganath, A. Baji, H.K. Raut, R. Sahay, S. Ramakrishna,Hierarchical structured electrospun nanofibers for improved fog harvesting applications, Macromol. Mater. Eng., 302 (2017), 1600387(1–7).
157. D.P. Ura, J. Knapczyk-Korczak, P.K. Szewczyk, E.A. Sroczyk, T. Busolo, M.M. Marzec, A. Bernasik, S. Kar-Narayan, U. Stachewicz, Surface potential driven water harvesting from fog, ACS Nano, 15 (2021), 8848-8859.
158. H. Zhou, X. Jing, Z. Guo,Excellent fog droplets collector via an extremely stable hybrid hydrophobic-hydrophilic surface and Janus copper foam integrative system with hierarchical micro/nanostructures, J. Colloid Interface Sci., 561 (2020), 730-740.
159. L. Zhong, H. Zhu, Y. Wu, Z.G. Guo, Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges, J. Colloid Interf. Sci. (2018).
160. J. Knapczyk-Korczak, J. Zhu, D. P. Ura, P. K. Szewczyk, A. Gruszczyński, L. Benker, S. Agarwal and U. Stachewicz, Enhanced Water Harvesting System and Mechanical Performance from Janus Fibers with Polystyrene and Cellulose Acetate, ACS Sustainable Chem. Eng., 2021, 9, 180–188.
161. J. Knapczyk-Korczak, P. K. Szewczyk, D. P. Ura, R. J. Bailey, E. Bilotti and U. Stachewicz, Sustainable Mater. Technol., 2020, 25, e00191.
162. J. Knapczyk-Korczak, P. K. Szewczyk, D. P. Ura, K. Berent and U. Stachewicz, Hydrophilic nanofibers in fog collectors for increased water harvesting efficiency, RSC Adv., 2020, 10, 22335–22342.
163. B. Tang, L. Zhang, R. Li, J. Wu, M.N. Hedhili, P. Wang, Are vacuum-filtrated reduced graphene oxide membranes symmetric, Nanoscale, 8 (2016), 1108-1116
164. A. Lee, et al., Water harvest via dewing, Langmuir, 28 (27) (2012), 10183-10191.
165. C. Li, Y. Liu, C. Gao, X. Li, Y. Xing, Y. Zheng, Fog harvesting of bioinspired nanocones decorated 3D fiber network, Appl Mater Interfaces, 11 (2019), 4507-4513.
166. G. Zhang, V. Chen, W. Xu, R. Galos, L. Zhou, Y. Shi, Piezoelectric leaf generator for wind energy harvest, ASME 2014 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., American Society of Mechanical Engineers (2014), V004T09A031-V004T09A031.
167. L. Zhu, M. Gao, C. K. N. Peh, X. Wang, G. W. Ho, Adv. Energy Mater. 2018, 8, 1702149.
168. M. Gao, C. K. Peh, H. T. Phan, L. Zhu, G. W. Ho, Adv. Energy Mater. 2018, 8, 1800711.

無法下載圖示 全文公開日期 2025/08/29 (校內網路)
全文公開日期 2027/08/29 (校外網路)
全文公開日期 2027/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE