簡易檢索 / 詳目顯示

研究生: 宋爾文
Erh-Wen Sung
論文名稱: 二硫化鎢摻雜鑽石奈米片複合結構之光特性研究
WS2-ND hybrid nanostructures for photodetectors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
張立
Li Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 205
中文關鍵詞: 二硫化鎢超奈米鑽石二硫化鎢摻雜鑽石奈米片複合結構矽奈米線
外文關鍵詞: WS2-ND hybrid nanostructures
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分為三部分,第一部分探討二硫化鎢剝落機制以及將其奈米片與超奈米鑽石摻雜為複合材料,並對其做光特性分析,接著探討不同水熱時間對二硫化鎢摻雜鑽石奈米片之品質,並對其做物性及電性分析;第二部分將不同成長時間及通入不同流量之奈米鑽石,與二硫化鎢摻雜鑽石奈米片結合,並以不同分析儀器對其做品質分析,以及探討光特性之影響;第三部分探討不同蝕刻時間之矽奈米線與二硫化鎢摻雜鑽石奈米片及奈米鑽石之複合結構特性分析,探討其品質及光特性影響。
研究發現,不同比例之乙醇與去離子水所剝離出之二硫化鎢奈米片密度不一,當乙醇及去離子水比例較少時,溶液幾乎呈透明狀,當兩者比例接近1:1時之濃度最濃,代表剝離出之奈米片數量較多,而經實驗得知乙醇與去離子水比例為7:3時之光響應最佳。接著將其與超奈米鑽石摻雜形成複合結構,發現同樣乙醇與去離子水比例為7:3時之光響應更高,達到1.01 A/W,而加入摻氮之超奈米鑽石可使穩定性提升許多;加入摻氬之超奈米鑽石可使開關燈比率從254上升到908,最後一部分將矽基板經由不同時間之蝕刻成為矽奈米線,可造成光捕獲效應,使響應值到達0.513 A/W,且響應時間縮短為0.467秒,而其穩定性也相對提升。


In this study, the tungsten disulfide nanosheets were first stripped from different ratios of ethanol and DI Water. It is found that the photo response is the highest when the ratio of ethanol to deionized water is 7:3. Then it was doped with ultrananocrystalline diamond sheets to form a hybrid nanosheets structure(WS2-ND). It was observed that the photo response can reach to 1.01 A/W when the ratio of ethanol to deionized water was 7:3.
Finally, the ultra-nanocrystalline diamond film (UNCD) were used as the substrates for the WS2-ND hybrid structure. It is indicated that the stability increases for the WS2-ND/NUNCD hybrid structure. It is also noted that the switch ratio increases from 254(WS2-ND) to 908(WS2-ND/Ar-UNCD). This work provide a simple and promising approach for photodetector applications.

目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 I 1.1前言 I 1.2研究動機 2 第二章 文獻回顧 3 2.1 二硫化鎢特性與製備 3 2.1.1 二硫化鎢特性 3 2.1.2 二硫化鎢成長機制與製備方法 6 a. 液相超聲波震盪機制 7 b. 插層法機制 9 c. 機械動態剝離機制 10 d. 化學氣相沉積成長法機制 11 2.2 奈米結晶鑽石特性與製備 12 2.2.1 奈米結晶鑽石(Nanocrystalline diamond)簡介 12 2.2.2 超奈米結晶鑽石(Ultra-nanocrystalline diamond)簡介 13 2.2.3 (超)奈米結晶鑽石成長機制 13 2.3 矽奈米線簡介及製備 16 2.3.1 矽奈米線簡介 16 2.3.2 矽奈米線製備 16 a. 金屬輔助化學蝕刻機制 16 b. 氣相-液相-固相(Vapor-liquid-solid, VLS)成長機制 18 2.4 二硫化鎢光檢測器理論 20 第三章 實驗方法 22 3.1實驗設計與流程 22 3.2製備之材料介紹 26 3.3基板清洗 27 3.4液相超聲波震盪剝離二硫化鎢塊體 28 3.5微波電漿化學氣相沉積法(Microwave Plasma Chemical Vapor Deposition method)成長奈米結晶鑽石 29 3.6 矽奈米線製備 31 3.7儀器設備與材料分析方法 32 3.7.1場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscopy,FE-SEM) 32 3.7.2 場發射穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscope,FE-TEM) 33 3.7.3紫外線-可見光分光光譜儀 (UV-VIS) 34 3.7.4 X射線繞射儀 (XRD) 35 3.7.5 拉曼光譜儀 (Raman Spectrum) 36 3.7.6光檢測器 (PD) 37 第四章 二硫化鎢摻雜鑽石奈米片(WS2-ND)之光特性研究 38 4.1不同比例濃度之二硫化鎢奈米片特性分析 38 4.1.1 表面型態分析 39 4.1.2 紫外-可見光光譜儀分析 43 4.1.3 X光繞射分析 47 4.1.4拉曼光譜儀分析 47 4.1.5不同比例濃度之二硫化鎢奈米片之光特性分析 49 4.2不同比例濃度之二硫化鎢摻雜鑽石奈米片之特性分析 53 4.2.1 表面型態分析 54 4.2.2 紫外-可見光光譜儀分析 58 4.2.3 X光繞射分析 59 4.2.4拉曼光譜儀分析 60 4.2.5不同比例濃度之二硫化鎢摻雜鑽石奈米片之光特性分析 61 4.3不同水熱時間對二硫化鎢摻雜鑽石奈米片之特性分析 64 4.3.1 表面型態分析 64 4.3.2 紫外-可見光光譜儀分析 66 4.3.3 X光繞射分析 67 4.3.4拉曼光譜儀分析 68 4.3.5不同水熱時間對二硫化鎢摻雜鑽石奈米片之光特性分析 69 4.4二硫化鎢及二硫化鎢摻雜鑽石奈米片之綜合分析 74 第五章 二硫化鎢-鑽石奈米片/超奈米鑽石(WS2-ND /UNCD)之光特性研究 78 5.1二硫化鎢-鑽石奈米片/摻氮超奈米鑽石之特性分析 78 5.1.1 表面型態分析 78 5.1.2 紫外-可見光光譜儀分析 81 5.1.3 X光繞射分析 83 5.1.4拉曼光譜儀分析 84 5.1.5二硫化鎢-鑽石奈米片/摻氮超奈米鑽石之光特性分析 87 5.2二硫化鎢-鑽石奈米片/摻氮超奈米鑽石(WS2-ND/NUNCD)之快速熱退火特性分析 93 5.2.1 表面型態分析 93 5.2.2 紫外-可見光光譜儀分析 96 5.2.3 X光繞射分析 97 5.2.4拉曼光譜儀分析 98 5.2.5二硫化鎢摻雜鑽石奈米片/摻氮超奈米鑽石(WS2-ND/NUNCD)快速熱退火之光特性分析 101 5.3二硫化鎢-鑽石奈米片/摻氬超奈米鑽石(WS2-ND/Ar-UNCD)之特性分析 106 5.3.1 表面型態分析 106 5.3.2 紫外-可見光光譜儀分析 108 5.3.3 X光繞射分析 109 5.3.4拉曼光譜儀分析 110 5.3.5二硫化鎢-鑽石奈米片/摻氬超奈米鑽石(WS2-ND/Ar-UNCD)之光特性分析 112 5.4二硫化鎢-鑽石奈米片/摻氬超奈米鑽石(WS2-ND/Ar-UNCD)之快速熱退火特性分析 117 5.4.1 表面型態分析 117 5.4.2 紫外-可見光光譜儀分析 119 5.4.3 X光繞射分析 120 5.4.4拉曼光譜儀分析 121 5.4.5之二硫化鎢摻雜鑽石奈米片/摻氬超奈米鑽石(WS2-ND/Ar-UNCD)快速熱退火之光特性分析 124 5.5二硫化鎢-鑽石奈米片/超奈米鑽石之綜合分析 129 第六章 二硫化鎢-鑽石奈米片/摻氮超奈米鑽石及矽奈米線(WS2-ND/NUNCD+SiNW)之光特性研究 132 6.1 二硫化鎢-鑽石奈米片/矽奈米線(WS2-ND/SiNW)之特性分析 132 6.1.1 表面型態分析 132 6.1.2 紫外-可見光光譜儀分析 136 6.1.3 X光繞射分析 137 6.1.4 拉曼光譜儀分析 139 6.1.5 二硫化鎢-鑽石奈米片/矽奈米線(WS2-ND/SiNW)之光特性分析 141 6.2 二硫化鎢摻雜鑽石奈米片/摻氮超奈米鑽石及矽奈米線(WS2-ND/NUNCD+SiNW)之特性分析 146 6.2.1 表面型態分析 146 6.2.2 紫外-可見光光譜儀分析 150 6.2.3 X光繞射分析 151 6.2.4 拉曼光譜儀分析 153 6.2.5 二硫化鎢-鑽石奈米片/奈米鑽石及矽奈米線(WS2-ND/NUNCD+SiNW)之光特性分析 155 6.3二硫化鎢-鑽石奈米片/摻氮超奈米鑽石及矽奈米線(WS2-ND/NUNCD+SiNW)快速熱退火之特性分析 161 6.3.1 表面型態分析 161 6.3.2 紫外-可見光光譜儀分析 164 6.3.3 X光繞射分析 166 6.3.4 拉曼光譜儀分析 168 6.3.5二硫化鎢-鑽石奈米片/摻氮超奈米鑽石及矽奈米線快速熱退火之光特性分析 170 6.4二硫化鎢-鑽石奈米片/摻氮超奈米鑽石及矽奈米線(WS2-ND/NUNCD+SiNW)之綜合分析 176 第七章 結論與未來展望 178 7.1 結論 178 7.2 未來展望 183 參考資料 184

[1] Sethulekshmi, A.S., et al., Insights into the reinforcibility and multifarious role of WS2 in polymer matrix. Journal of Alloys and Compounds, 2021. 876.
[2] Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454.
[3] Dong, N., et al., Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets. Scientific Reports, 2015. 5(1): p. 14646.
[4] Mishra, A.K., K.V. Lakshmi, and L. Huang, Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Scientific Reports, 2015. 5(1): p. 15718.
[5] Sharma, S., et al., Excitation-dependent photoluminescence from WS2 nanostructures synthesized via top-down approach. Journal of Materials Science, 2017. 52(19): p. 11326-11336.
[6] Li, J., et al., Large-area, flexible broadband photodetector based on WS2 nanosheets films. Materials Science in Semiconductor Processing, 2020. 107.
[7] Butler, J.E., et al., Understanding the chemical vapor deposition of diamond: Recent progress. Journal of Physics Condensed Matter, 2009. 21(36).
[8] Lin, Y.C., et al., Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature. Diamond and Related Materials, 2011. 20(2): p. 191-195.
[9] Eftekhari, A., Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. Journal of Materials Chemistry A, 2017. 5(35): p. 18299-18325.
[10] He, J., et al., Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale, 2019. 11(6): p. 2577-2593.
[11] Cong, C., et al., Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials, 2018. 6(1).
[12] Raza, F., et al., Visible-Light-Driven Oxidative Coupling Reactions of Amines by Photoactive WS2 Nanosheets. ACS Catalysis, 2016. 6(5): p. 2754-2759.
[13] Jariwala, D., et al., Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2014. 8(2): p. 1102-1120.
[14] Mattheiss, L.F., Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B, 1973. 8(8): p. 3719-3740.
[15] Liu, Q., et al., Stable Metallic 1T-WS2Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties. Advanced Materials, 2015. 27(33): p. 4837-4844.
[16] Tsai, H.-L., et al., Exfoliated−Restacked Phase of WS2. Chemistry of Materials, 1997. 9(4): p. 879-882.
[17] Yuan, Y., R. Li, and Z. Liu, Establishing Water-Soluble Layered WS2 Nanosheet as a Platform for Biosensing. Analytical Chemistry, 2014. 86(7): p. 3610-3615.
[18] Zhang, D., et al., Morphology and structure of WS2 nanosheets prepared by solvothermal method with surfactants. Integrated Ferroelectrics, 2018. 188(1): p. 24-30.
[19] Schutte, W.J., J.L. De Boer, and F. Jellinek, Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry, 1987. 70(2): p. 207-209.
[20] Luo, M., S.Y. Hao, and Y.T. Ling, Ab initio study of electronic and magnetic properties in Ni-doped WS2 monolayer. AIP Advances, 2016. 6(8): p. 085112.
[21] Chen, Y., et al., High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure. Small, 2018. 14(9): p. 1703293.
[22] Long, M., et al., Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. Nano Letters, 2016. 16(4): p. 2254-2259.
[23] Xiong, Y.-F., et al., Broadband Optical-Fiber-Compatible Photodetector Based on a Graphene-MoS2 -WS2 Heterostructure with a Synergetic Photogenerating Mechanism. Advanced Electronic Materials, 2019. 5(1): p. 1800562.
[24] Zhang, X., et al., A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten, 2019. 1(1): p. 101-109.
[25] Neog, A., S. Deb, and R. Biswas, Atypical electrical behavior of few layered WS2 nanosheets based platform subject to heavy metal ion treatment. Materials Letters, 2020. 268: p. 127597.
[26] Tang, H., et al., Schottky Contact in Monolayer WS 2 Field‐Effect Transistors. Advanced Theory and Simulations, 2019. 2(5): p. 1900001.
[27] Sinha, S., Jyotsna, and S.K. Arora. Van der Waals heterostructures based on liquid phase exfoliated MoS2 and WS2 nanosheets. in Materials Today: Proceedings. 2020.
[28] Owens, D.K., Some thermodynamic aspects of polymer adhesion. Journal of Applied Polymer Science, 1970. 14(7): p. 1725-1730.
[29] Shen, J., et al., Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015. 15(8): p. 5449-5454.
[30] Ambrosi, A., Z. Sofer, and M. Pumera, 2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chemical Communications, 2015. 51(40): p. 8450-8453.
[31] Yang, C., et al., Enhanced catalytic conversion of polysulfides using high-percentage 1T-phase metallic WS2 nanosheets for Li–S batteries. Green Energy & Environment, 2021.
[32] Xu, D., et al., High Yield Exfoliation of WS2 Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS2/CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018. 10(3): p. 2810-2818.
[33] Novoselov, K.S., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
[34] Li, H., et al., Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014. 47(4): p. 1067-1075.
[35] Mohan, M., et al., Atomic adsorption of Sn on mechanically cleaved WS2 surface at room temperature. Surface Science, 2020. 701.
[36] Lin, Z., et al., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials, 2016. 3(4).
[37] Jin, Y., et al., Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion. Chemistry of Materials, 2020. 32(13): p. 5616-5625.
[38] Lin, C.R., et al., Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film. International Journal of Photoenergy, 2014. 2014: p. 1-8.
[39] Arora, S. and V.D. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness. Thin Solid Films, 2006. 515(4): p. 1963-1969.
[40] Kroto, H.W., et al., C60: Buckminsterfullerene. Nature, 1985. 318(6042): p. 162-163.
[41] Matsumoto, S., et al., Vapor Deposition of Diamond Particles from Methane. Japanese Journal of Applied Physics, 1982. 21(Part 2, No. 4): p. L183-L185.
[42] Lee, W.-F., et al., The effect of nitrogen addition to Ar/CH4 gas mixture on microstructural characterization of nanocrystalline diamond. Journal of Polymer Engineering, 2014. 34(3): p. 253-258.
[43] Zhong, X.Y., et al., Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping. Journal of Applied Physics, 2009. 105(3): p. 034311.
[44] Kumar, D., et al., Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. Journal of Nanoparticle Research, 2009. 12(6): p. 2267-2276.
[45] Ozdemir, B., et al., Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology, 2011. 22(15): p. 155606.
[46] Yue, H., et al., Antireflection properties and solar cell application of silicon nanostructures. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2011. 29(3): p. 031208.
[47] Srivastava, S.K., et al. Silicon nanowire arrays based “black silicon” solar cells. in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). 2009.
[48] 趙健仰、王瑞琪、鄭家宜, 細矽奈米線 驚奇大無限. 科學發展. 2013 年 6 月(486 期).
[49] Peng, K., et al., Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition. Advanced Functional Materials, 2003. 13(2): p. 127-132.
[50] KQ Peng, Y.Y., SP Gao, J Zhu, Synthesis of large‐area silicon nanowire arrays via self‐assembling nanoelectrochemistry. 2002. 14(16): p. 1164-1167.
[51] Peng, K. and J. Zhu, Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochimica Acta, 2004. 49(16): p. 2563-2568.
[52] Q. Peng, K., Z. P. Huang, and J. Zhu, Fabrication of Large-Area Silicon Nanowire p–n Junction Diode Arrays. Advanced Materials, 2004. 16(1): p. 73-76.
[53] Peng, K., et al., Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angewandte Chemie International Edition, 2005. 44(18): p. 2737-2742.
[54] Peng, K., et al., Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications. Small, 2005. 1(11): p. 1062-1067.
[55] Thiyagu, S., et al., Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells. RSC Advances, 2015. 5(17): p. 13224-13233.
[56] Peng, K.Q., et al., Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials, 2006. 16(3): p. 387-394.
[57] Namdari, P., H. Daraee, and A. Eatemadi, Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Nanoscale Research Letters, 2016. 11(1): p. 406.
[58] Namdari, P., H. Daraee, and A. Eatemadi, Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Nanoscale Research Letters, 2016. 11(1).
[59] Liu, K., M. Sakurai, and M. Aono, ZnO-Based Ultraviolet Photodetectors. Sensors, 2010. 10(9): p. 8604-8634.
[60] Liu, L., et al., Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors. IEEE Transactions on Electron Devices, 2011. 58(9): p. 3042-3047.
[61] Berweger, S., et al., Spatially Resolved Persistent Photoconductivity in MoS2–WS2 Lateral Heterostructures. ACS Nano, 2020. 14(10): p. 14080-14090.
[62] Gong, Y., et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014. 13(12): p. 1135-1142.
[63] Shlyakhov, I., et al., Measurement of direct and indirect bandgaps in synthetic ultrathin MoS2 and WS2 films from photoconductivity spectra. Journal of Applied Physics, 2021. 129(15): p. 155302.
[64] Ren, X., et al., Flexible self-powered photoelectrochemical-type photodetector based on 2D WS2-graphene heterojunction. FlatChem, 2021. 25: p. 100215.
[65] 國立台灣科技大學貴重儀器中心 場發射掃描式電子顯微鏡.
[66] 國立台灣科技大學貴重儀器中心 場發射穿透式電子顯微鏡
[67] 國立台灣科技大學貴重儀器中心 X光繞射儀
[68] 國立台灣科技大學 顯微拉曼光譜儀
[69] Bayat, A. and E. Saievar-Iranizad, Synthesis of blue photoluminescent WS 2 quantum dots via ultrasonic cavitation. Journal of Luminescence, 2017. 185: p. 236-240.
[70] Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013. 3(1).
[71] De Weerdt, F. and A.T. Collins, Determination of the C defect concentration in HPHT annealed type IaA diamonds from UV-VIS absorption spectra. Diamond and Related Materials, 2008. 17(2): p. 171-173.
[72] Pandey, M., R. D'Cunha, and A.K. Tyagi, Defects in CVD diamond: Raman and XRD studies. Journal of Alloys and Compounds, 2002. 333(1-2): p. 260-265.
[73] Ralchenko, V., et al., Nitrogenated nanocrystalline diamond films: Thermal and optical properties. Diamond and Related Materials, 2007. 16(12): p. 2067-2073.
[74] Mariotto, G., F.L. Freire Jr, and C.A. Achete, Raman spectroscopy on nitrogen-incorporated amorphous hydrogenated carbon films. Thin Solid Films, 1994. 241(1-2): p. 255-259.
[75] Thangasamy, P., J.A. Raj, and M. Sathish, Transformation of multilayer WS2 nanosheets to 1D luminescent WS2 nanostructures by one-pot supercritical fluid processing for hydrogen evolution reaction. Materials Science in Semiconductor Processing, 2020. 119.
[76] Pang, H., et al., Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy. Applied Surface Science, 2010. 256(21): p. 6403-6407.
[77] Kathiravan, D. and B.R. Huang, Self-growth of graphene nanosheets on a crystalline nanodiamond substrate using NixZnxO catalyst and their efficient photodetection properties. Applied Materials Today, 2020. 20.
[78] Khan, A., et al., A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime. Nanotechnology, 2017. 28(5): p. 055602.
[79] Duan, T., et al., Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy, 2015. 15: p. 293-302.
[80] Wang, H., et al., Effect of post-annealing on laser-ablation deposited WS2 thin films. Vacuum, 2018. 152: p. 239-242.
[81] Cheng, L., et al., Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction. Angewandte Chemie International Edition, 2014. 53(30): p. 7860-7863.
[82] Jana, S., et al., Impact of annealing on the electrodeposited WS2 thin films: Enhanced photodegradation of coupled semiconductor. Applied Surface Science, 2014. 317: p. 154-159.
[83] J.-W. Chung, Z.R.D., F.S. Ohuchi, WS2 thin films by metal organic chemical vapor deposition. Journal of Crystal Growth, 1998. 186(1-2): p. 137-150.
[84] Kumar, N., et al., Controlled atmosphere dependent tribological properties of thermally annealed ultrananocrystalline diamond films. Diamond and Related Materials, 2019. 97.
[85] Kumar, N., et al., Microstructure, chemical bonds, and friction properties of nanocrystalline diamond films deposited in two different plasma media. Physics of the Solid State, 2013. 55(10): p. 2076-2087.
[86] Fuentes-Fernandez, E.M.A., et al., Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications. Thin Solid Films, 2016. 603: p. 62-68.
[87] Han, Y.-S., Y.-K. Kim, and J.-Y. Lee, Effects of argon and oxygen addition to the CH4-H2 feed gas on diamond synthesis by microwave plasma enhanced chemical vapor deposition. Thin Solid Films, 1997. 310(1): p. 39-46.
[88] Zhou, D., et al., Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas. Journal of Applied Physics, 1998. 84(4): p. 1981-1989.
[89] May, P.W., et al., Reevaluation of the mechanism for ultrananocrystalline diamond deposition from Ar∕CH4∕H2 gas mixtures. Journal of Applied Physics, 2006. 99(10): p. 104907.
[90] Liu, Y., et al., Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale Research Letters, 2012. 7(1): p. 663.
[91] Naffeti, M., et al., Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. Nanomaterials, 2020. 10(3): p. 404.
[92] Naffeti, M., et al., Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. Nanomaterials (Basel, Switzerland), 2020. 10(3): p. 404.
[93] Chang, Y.-M., et al., Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Nanotechnology, 2010. 21(38): p. 385705.
[94] Xu, S., D. Li, and P. Wu, One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2015. 25(7): p. 1127-1136.
[95] Ghorai, A., et al., Exfoliation of WS2 in the semiconducting phase using a group of lithium halides: a new method of Li intercalation. Dalton Transactions, 2016. 45(38): p. 14979-14987.
[96] Chen, W., et al., Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochimica Acta, 2019. 298: p. 313-320.
[97] Li, J., et al., Large-area, flexible broadband photodetector based on WS2 nanosheets films. Materials Science in Semiconductor Processing, 2020. 107: p. 104804.
[98] Yao, J.D., et al., Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale, 2015. 7(36): p. 14974-14981.
[99] Perea-López, N., et al., Photosensor Device Based on Few-Layered WS2 Films. Advanced Functional Materials, 2013. 23(44): p. 5511-5517.
[100] Zhang, C., et al., High-performance photodetectors for visible and near-infrared lights based on individual WS2nanotubes. Applied Physics Letters, 2012. 100(24): p. 243101.
[101] Lan, C., et al., Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. Journal of Materials Chemistry C, 2017. 5(6): p. 1494-1500.
[102] Pataniya, P.M. and C.K. Sumesh, WS2 Nanosheet/Graphene Heterostructures for Paper-Based Flexible Photodetectors. ACS Applied Nano Materials, 2020. 3(7): p. 6935-6944.
[103] Liu, Y., et al., Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability. Applied Surface Science, 2019. 481: p. 1127-1132.
[104] Xue, Y., et al., Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano, 2016. 10(1): p. 573-580.

無法下載圖示 全文公開日期 2026/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE