簡易檢索 / 詳目顯示

研究生: 羅麗文
Li-Wen Lo
論文名稱: 體積塊除料法對大型鋁製框架製造成本之效應分析
Analysis on manufacturing cost of a large-scale alumina frame by different bulk material removal methods
指導教授: 郭財吉
Tsai-Chi Kuo
口試委員: 王孔政
Kung-Jeng Wang
林久翔
Chiu-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 59
中文關鍵詞: 鋁製框架體積塊除料NC銑削水刀加工製造成本PDCA田口參數設計製程規劃生產排程電力碳排
外文關鍵詞: Alumina frame, Bulk material removal, NC milling, Waterjet machining, Manufacturing cost, PDCA, Taguchi’s parameter design, Process planning, Production scheduling, Electricity carbon emission
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

單件式的大型框形板件為機械產業所需之機構元件。由於製程中材料的移除比例很高,成品的結構強度與平面度誤差都有很大的挑戰,稱之為體積塊除料 (BMR,bulk material removal)。本研究探討半導體測試設備使用之大型鋁製框架製造程序,秉持循環式品管方法(PDCA)之精神,以製造成本為管理目標,共執行8組實體切削實驗,促使製造成本持續地改善,建立標準作業規範。

本研究討論不同體積塊除料方式的製造成本效應,包括:加工機具 (切削加工機、水刀加工機)與NC程式軟體 (UG/NX與SolidCAM)。研究案例的材料移除率達79.73%,產品除了符合輪廓尺寸要求外,框架的平面度誤差必須控制在0.05 mm之內。實驗結果顯示:水刀加工雖有最短的佔機時間,與習用工法相較有53.80%的降幅;但是總製造成本增加29.87%,而且電力碳排量遠高於習用的銑削程序。使用中心出水銑削方法,製造成本略為增加,但是佔機時間有可觀的降幅50.31%。改變除料工法,採用綜合插銑與等高軌跡銑削的NC加工程序,可以充分發揮端銑刀具的特色,雖然總製造成本的改善僅1.28%,佔機時間可以降低45.98%。本研究提出半導體測試產業用大型鋁製框架製作之建議作業規範,可做為製程規劃與生產排程之參考。


A large-scale frame panel in one-piece is one of essential structure component used in the mechanical industry. Because the proportion of material removal is high during the manufacturing process, the products have great challenges such as the structural strength and the flatness error of the frame plate, which process is called bulk material removal (BMR). This study investigates the process of a large-scale alumina frame used in the semiconductor testing device. According to the spirit of circular quality control method (PDCA), taking manufacturing cost as the management goal, a total of 8 sets of physical cutting experiments were carried out to improve the manufacturing cost continuously, and established standard operating procedures.

The study investigates effects of the manufacturing cost by different BMR methods, included cutting machines (machining centers, water jet machines) and NC programming software (UG/NX and SolidCAM). The material removal rate of the case studied is 79.73%. In addition to satisfying the requirements of product’s contour, the flatness error of the frame must be controlled within 0.05 mm. Experimental results show that although waterjet machining has the shortest operating time, compared with the conventional milling method, the operating time can be reduced by 53.08%; the manufacturing cost increases by 29.87%. In addition, its electricity carbon emission is more heavy than the conventional milling process. Using the center coolant milling method, the manufacturing cost increases slightly, but the operating time has a considerable decrease of 50.31%. Changing the BMR process by the method integrating the plunge milling and the trochoidal milling can fulfil the cutting characteristics of an end mill. In spite of the total manufacturing cost is only improved by 1.28%, the machine time can be reduced by 45.98%. The experimental data provide useful references for the process planning and production scheduling of making a large-scale aluminum frame used in the semiconductor testing industry.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究步驟 5 1.4 論文架構 5 第二章 文獻探討 6 2.1 製造成本分析 6 2.2 製造成本與生產品質 9 2.3 NC銑削製程 10 第三章 研究方法 12 3.1 金屬框形機架加工 12 3.2 體積塊除料方法 15 3.3 CNC加工程序 18 3.3.1 BMR加工程序 18 3.3.2 FM加工程序 22 3.4 製造成本 24 3.5 PDCA實驗規劃 26 3.6 田口切削參數設計 27 3.7 碳足跡計算 29 第四章 案例與實驗結果 30 4.1 實驗案例 30 4.2 習用工法 31 4.2.1 切削參數設計 31 4.2.2 實體切削實驗 34 4.2.3 製造成本分析 36 4.3 CAM軟體效應分析 38 4.4 水刀加工效應分析 40 4.5 中心出水銑削效應分析 42 4.6 建立作業規範 43 第五章 結論 47 參考文獻 48

[1] Kalpakjian, S. and S.R. Schmid, Manufacturing engineering and technology, Sixth
edition, Prentice Hall, Singapore, Chap. 1, (2010).
[2] Conradie, P., Dimitrov, M. and G. Oostuizen, “A cost modelling approach for
milling titanium alloys,” Procedia CIRP, Vol.46, pp.412-415 (2016).
https://doi.org/10.1016/j.procir.2016.04.014
[3] Silva, F.J.G., Sousa, V.F.C., Pinto, A.G., Ferreira, L.P. and T. Pereira, “Build-
Up an economical tool for machining operations cost estimation.” Metals, Vol.12,
No.7, 1205 (2022). https://doi.org/10.3390/met12071205
[4] Nicolaou, P., Thurston, D. L. and J.V. Carnahan, “Machining quality and cost:
estimation and tradeoffs.” ASME. J. Manuf. Sci. Eng. Vol.12, No.4, pp. 840–851
(2002). https://doi.org/10.1115/1.1511169
[5] Yamashina, H. and T. Kubo, “Manufacturing cost deployment,” International Journal
of Production Research, Vol.40, No.16, pp. 4077-4091 (2002).
https://doi.org/10.1080/00207540210157178
[6] Othmani, R., Bouzid, W. and M. Hbaieb, “Machining time in rough milling,”
Materials Technology, Vol.23, No.3, pp.169-173 (2008).
http://doi.org/10.1179/175355508X266953
[7] Pelayo, G.U., Olvera-Trejo, D., Luo, M., Tang, K., López de Lacalle, L.N. and A.
Elías-Zuñiga, “A model-based sustainable productivity concept for the best
decision-making in rough milling operations.” Measurement 2021, Vol.186, 110120
(2021). https://doi.org/10.1016/j.measurement.2021.110120
[8] Slama, H.B., Gaha, R. and A.B. Amara, “Multi-Objective optimization of cutting
parameters and toolpaths in pocket milling considering energy savings and
machining costs, Advances in Manufacturing Technology XXXV, Vol.25, pp.173-178
(2022). https://doi.org/10.3233/ATDE220586
[9] Pimenov, D.Y., Abbas, A.T. and M.K. Gupta, “Investigations of surface quality and
energy consumption associated with costs and material removal rate during face
milling of AISI 1045 steel.” International Journal of Advanced Manufacturing
Technology, Vol. 107, pp.3511–3525 (2020).
https://doi.org/10.1007/s00170-020-05236-7
[10] Ižol, P., Brindza, J., Vrabeľ, M., Demko, M. and S. Basilio, “Effect of
optimization software on part shape accuracy and production times during rough
milling of aluminum alloy,” Machines, Vol.10, No.12, 1212 (2022).
https://doi.org/10.3390/machines10121212
[11] 新虎將切削中心機,https://www.gen-tiger.com
[12] 永進切削中心機,https://www.ycmcnc.com
[13] 中心出水加工特色,https://www.speedtiger.com.tw
[14] 中心出水刀具,https://www.annwaytools.com
[15] 協鴻中心出水加工機,https://www.hartford.com.tw
[16] DeGarmo, E.P., Black, J.T. and R.A. Kohser, Materials & Processes in
Manufacturing, 10th edition, Willey & Sons, Inc. (2007).
[17] 水刀加工機,https://www.ohprecis.com
[18] Triebe, M.J., Zhao, F. and J.W. Sutherland, “Development of a cost model for
vertical milling machines to assess impact of lightweighting. Journal of
Manufacturing and Materials Processing, Vol.5, No.4, 129 (2021).
https://doi.org/10.3390/jmmp5040129
[19] 耗電量公式,https://www.bsmi.gov.tw
[20] 李輝煌,田口方法:品質設計的原理與實務,高立圖書有限公司,第1.4節,2008年。
[21] 國際鏈結之企業碳足跡指引,經濟部,https://ghg.tgpf.org.tw/CVResources

無法下載圖示 全文公開日期 2025/06/26 (校內網路)
全文公開日期 2025/06/26 (校外網路)
全文公開日期 2025/06/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE