簡易檢索 / 詳目顯示

研究生: 蔣介永
Yulius - Hari S
論文名稱: 植物工廠多作物排程之研究
Multiple-Crop Scheduling for Plant Factory
指導教授: 楊 朝 龍
Chao-Lung Yang
口試委員: 林樹強
Shu-Chiang Lin
郭彥甫
Yanfu Kuo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 植物工廠混合整數規劃法生產排程
外文關鍵詞: Plant factory, mixed integer programming, crop scheduling
相關次數: 點閱:231下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物工廠是一種新式的農作物生產方式,透過對生產環境因素如溫度、溼度、光線、水分及營養物的完全控制,加速植物生長的效能及提升作物品質。雖然植物工廠作物生產有著不少優點,但由於大量的能源消耗,使得植物工廠的營運成本居高不下。因此,如何選擇適合的作物並進行產能的規劃排程以提升植物工廠的營利,成為植物工廠經營的重要課題。本研究針對數個影響植物工廠營運的因子,如農作物的價格、客戶之合約訂單、及作物生產條件限制,進行農作物排程規劃。在本研究中,農作物排程問題以混合整數規劃法制定為一最佳化模式問題。利用整數規劃法將極大化整體營收作為目標式,並將數個考慮因子制定為限制式。其排程問題利用Cplex之分枝界限演算法(branch-and-bound algorithms)求解。所提出的排程最佳化模式將可廣泛地運用於求解植物工廠之作物排程問題。


    A plant factory is a crop production facility in which all the environmental elements such as temperature, humidity, lighting, and nutrition for plant growth are artificially controlled. The operating cost of plant factories is usually high due to intensive energy consumption. It is crucial to choose appropriate crops for cultivation at proper time for revenue maximization. In this research, we propose a crop scheduling approach for plant factories. The proposed approach considers several factors which impacts the revenue of running plant factory, such as crop price fluctuation, crop contracting supply between plant factories and retailers, and operating setup for crop cultivation. The crop scheduling is formulated as a mixed integer programming problem and is solved using branch-and-bound algorithms. The proposed approach can be incorporated into any plant factory to increase its production and revenue.

    誌 謝 論 文 摘 要 ABSTRACT 內 容 列 表 目 錄 表 圖 目 錄 CHAPTER 1 INTRODUCTION CHAPTER 2 LITERATURE REVIEW 2.1 Plant Factory 2.1.1 Plant Factory Characteristics Advantages Disadvantages 2.1.2 Plant Factory, Greenhouse and Outdoor Farming Systems Comparison 2.2 Scheduling 2.2.1 Scheduling Overview 2.2.2 Scheduling in Agricultural Area 2.3 AMPL CPLEX CHAPTER 3 RESEARCH METHODOLOGY 3.1 Problem Definition 3.2 Model Design 3.3 Terminology 3.4 Mathematical Formulation 3.5 Objective Function 3.6 Constraint CHAPTER 4 TESTING AND EVALUATION 4.1 Evaluation Procedure 4.2 Scenario Design 4.3 Evaluation Design 4.4 Evaluation Result CHAPTER 5 CONCLUSION AND DISCUSSION 5.1 Research Conclusion 5.2 Research Discussion 5.3 Suggestions for Future Research 參 考 書 目 APPENDIX 1 AMPL MODEL APPENDIX 2 AMPL DATA

    AMPL, A Modeling Language for Mathematical Programming, http://www.ampl.com, accessed 2012.
    Economic Research Department, U.S. Department of Agriculture, http://ers.usda.gov/, accessed 2012.
    Ministry of Economy, Trade, and Industry, Japan, http://www.meti.go.jp/english/policy/sme_chiiki/plantfactory/index.html, accessed 2011.
    NEOS Solver, http://www.neos-server.org/neos/report.html, accessed 2011.
    World Census 2008, U.S. Census Bureau, http://www.census.gov/, accessed 2012.
    Alfandari, L., Lemalade, J. L., Nagih, A., & Plateau, G. (2011). A MIP flow model for crop-rotation planning in a context of forest sustainable development. [Article]. Annals of Operations Research, 190(1), 149-164. doi: 10.1007/s10479-009-0553-0
    Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1–3), 19-31. doi: 10.1016/s0167-8809(99)00028-6
    Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245-252. doi: 10.1016/j.ejor.2008.12.003
    Chern, C.-C., Chien, P.-S., & Chen, S.-Y. (2008). A heuristic algorithm for the hospital health examination scheduling problem. European Journal of Operational Research, 186(3), 1137-1157. doi: 10.1016/j.ejor.2007.02.029
    Costa, A., dos Santos, L., Alem, D., & Santos, R. (2011). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research, 1-19. doi: 10.1007/s10479-010-0830-y
    dos Santos, L. M. R., Costa, A. M., Arenales, M. N., & Santos, R. H. S. (2010). Sustainable vegetable crop supply problem. European Journal of Operational Research, 204(3), 639-647. doi: 10.1016/j.ejor.2009.11.026
    dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2008). Crop rotation scheduling with adjacency constraints. [Article]. Annals of Operations Research, 190(1), 165-180. doi: 10.1007/s10479-008-0478-z
    dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2011). Crop rotation scheduling with adjacency constraints. [Article]. Annals of Operations Research, 190(1), 165-180. doi: 10.1007/s10479-008-0478-z
    Fang, W., Ting, K. C., & Giacomelli, G. A. (1990). OPTIMIZING RESOURCE-ALLOCATION FOR GREENHOUSE POTTED PLANT-PRODUCTION. [Article]. Transactions of the Asae, 33(4), 1377-1382.
    Ferrer, J. C., Mac Cawley, A., Maturana, S., Toloza, S., & Vera, J. (2008). An optimization approach for scheduling wine grape harvest operations. [Article]. International Journal of Production Economics, 112(2), 985-999. doi: 10.1016/j.ijpe.2007.05.020
    Fourer, R., Gay, D. M., & Kernighan, B. W. (1997). AMPL: a modeling language for mathematical programming : with AMPL Plus student edition for Microsoft Windows: Duxbury Press.
    Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL: a modeling language for mathematical programming: Thomson/Brooks/Cole.
    Francis, C., Lieblein, G., Gliessman, S., Breland, T. A., Creamer, N., Harwood, R., . . . Poincelot, R. (2003). Agroecology: The Ecology of Food Systems. Journal of Sustainable Agriculture, 22(3), 99-118. doi: 10.1300/J064v22n03_10
    Franzke, A., Lysak, M. A., Al-Shehbaz, I. A., Koch, M. A., & Mummenhoff, K. (2011). Cabbage family affairs: the evolutionary history of Brassicaceae. Trends in Plant Science, 16(2), 108-116. doi: 10.1016/j.tplants.2010.11.005
    Hadiwiyanti, R. (2012). A Simulation Study of Dispatching Rule in Plant Factory. Master Thesis.
    Haneveld, W. K. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operational Research, 166(2), 406-429. doi: 10.1016/j.ejor.2004.03.009
    Homolka, J., & Mydlar, R. (2011). Efficiency evaluation in intensive growing of winter rape. [Article]. Agricultural Economics-Zemedelska Ekonomika, 57(5), 247-257.
    Ioslovich, I., & Gutman, P.-O. (2000). Optimal control of crop spacing in a plant factory. Automatica, 36(11), 1665-1668. doi: 10.1016/s0005-1098(00)00086-8
    Itoh, T., Ishii, H., & Nanseki, T. (2003). A model of crop planning under uncertainty in agricultural management. [Article; Proceedings Paper]. International Journal of Production Economics, 81-2, 555-558. doi: 10.1016/s0925-5273(02)00283-9
    Kato, K., Yoshida, R., Kikuzaki, A., Hirai, T., Kuroda, H., Hiwasa-Tanase, K., . . . Mizoguchi, T. (2010). Molecular Breeding of Tomato Lines for Mass Production of Miraculin in a Plant Factory. Journal of Agricultural and Food Chemistry, 58(17), 9505-9510. doi: 10.1021/jf101874b
    Kim, S.-H., Shin, C. S., Pho, C. S., Kim, B.-C., & Lee, J.-Y. (2011). Standardization Trend of Agriculture-IT Convergence Technology in Korea
    IT Convergence and Services. In J. J. Park, H. Arabnia, H.-B. Chang & T. Shon (Eds.), (Vol. 107, pp. 265-274): Springer Netherlands.
    Mills, E., & Jacobson, A. (2011). From carbon to light: a new framework for estimating greenhouse gas emissions reductions from replacing fuel-based lighting with LED systems. [Article]. Energy Efficiency, 4(4), 523-546. doi: 10.1007/s12053-011-9121-y
    Moon, A., Li, S., & Kim, K. (2011). Components Based Integrated Management Platform for Flexible Service Deployment in Plant Factory
    HCI International 2011 – Posters’ Extended Abstracts. In C. Stephanidis (Ed.), (Vol. 173, pp. 524-528): Springer Berlin Heidelberg.
    Naylor, J. (2002). Introduction to Operations Management: Financial Times Prentice Hall.
    Pavlista, A. D., & Feuz, D. M. (2005). Potato prices as affected by demand and yearly production. [Article]. American Journal of Potato Research, 82(4), 339-343.
    Samani, Z., Bawazir, S., Skaggs, R., Longworth, J., Pinon, A., & Tran, V. (2011). A simple irrigation scheduling approach for pecans. Agricultural Water Management, 98(4), 661-664. doi: 10.1016/j.agwat.2010.11.002
    Sarić, M. (1983). Theoretical and practical approaches to the genetic specificity of mineral nutrition of plants. Plant and Soil, 72(2), 137-150. doi: 10.1007/bf02181954
    Sarker, R., & Ray, T. (2009). An improved evolutionary algorithm for solving multi-objective crop planning models. Computers and Electronics in Agriculture, 68(2), 191-199. doi: 10.1016/j.compag.2009.06.002
    Seginer, I., & Ioslovich, I. (1999). Optimal spacing and cultivation intensity for an industrialized crop production system. [Article]. Agricultural Systems, 62(3), 143-157. doi: 10.1016/s0308-521x(99)00057-8
    Sethi, V. P., & Dubey, R. K. (2008). Optimal space utilization of a greenhouse using multi-rack tray system: Thermal modeling and experimental validation. Energy Conversion and Management, 49(10), 2890-2899. doi: 10.1016/j.enconman.2008.03.008
    Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory Management and Production Planning and Scheduling: Wiley.
    Stevenson, W. J., & Sum, C. C. (2010). Operations Management: An Asian Perspective: McGraw-Hill Education (Asia).
    Wijngaard, P. J. M. (1988). A heuristic for scheduling problems, especially for scheduling farm operations. European Journal of Operational Research, 37(1), 127-135. doi: 10.1016/0377-2217(88)90287-1
    Yiridoe, E. K., Bonti-Ankomah, S., & Martin, R. C. (2005). Comparison of consumer perceptions and preference toward organic versus conventionally produced foods: A review and update of the literature. [Article]. Renewable Agriculture and Food Systems, 20(4), 193-205. doi: 10.1079/raf2005113

    QR CODE