簡易檢索 / 詳目顯示

研究生: 李文杰
Wun-Jie - Li
論文名稱: 基於子空間方法在擁擠環境下進行視訊異常檢測之研究
The Study of Anomaly Detection in Crowded Scenes using a Subspace Approach
指導教授: 陳郁堂
Yie-Tarng Chen
口試委員: 陳省隆
Hsing-Lung Chen
吳乾彌
Chen-Mie Wu
林銘波
Ming-Bo Lin
方文賢
Wen-Hsien Fang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: 主成份空間剩餘主成份異常偵測
外文關鍵詞: Model principles, residual principles, abnormal detection
相關次數: 點閱:293下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出了一個以Principal Component Analysis (PCA)為基礎,新的異常檢測方法,將網路流量異常診斷的方法,應用在影像異常偵測上,我們首先經過時間空間特徵點的偵測Space-Time Interest Points(STIPs),得到影片中空間時間響應值較大的點,並在這些有興趣的點周圍取特徵,形成一個小立方體(cube),再將畫面沿著縱軸及橫軸做若干條線的切割,影片將會形成獨立的長方體,並且訓練各自的模型,我們使用了幾種空間時間的特徵來描述小立方體: 方向梯度直方圖(histogram of oriented gradient, HOG),光流方向直方圖(histogram of oriented optical flow, HOF)、方向描述子(motion direction descriptor)和速度描述子(motion magnitude descriptor),這樣不但包含了速度及方向上的資訊也包含了小立方體上外觀的特徵,我們在決定模型主成份與剩餘主成份的方法是利用主成份分析的結果,將每個特徵都視為一個資料點,計算出資料點與模型間的距離,與正常門檻值相比後判斷目前的資料點是否為異常。因為只運用到少量且特定的變異量做偵測,能夠有效降低維度。
    我們也將提出的演算法與一些公開的資料集做比較,透過模擬實驗以驗證我們提出的想法及流程的可靠性及準確性。


    In this thesis, we propose a new method for abnormal detection based on the Principal Component Analysis (PCA) and apply network traffic anomaly diagnosis to the detection of image anomalies. First, we obtained some relatively high points of response in the video by detecting the space-time interest points (STIPs), then gathered information around the points to form a cube, and finally segmented the picture with horizontal and vertical lines into partial windows, which divided the video into cuboids training separate models. We used several spatial and temporal features to describe the cuboids: histogram of oriented gradient (HOG), histogram of oriented optical flow (HOF), motion direction descriptor, and motion magnitude descriptor. These provided not only information in velocity and directionality, but also physical features of the cuboids. In deciding the model principles and residual principles, we resorted to the Principal Component Analysis and counted each individual feature as a data point, thereby calculating the distance between data point and model and judging whether the present data point is abnormal by comparing the distance value with the normal threshold. Because we used only a few specific variances for detection, we were able to reduce their dimension. We also compared our proposed method of calculation with some published datasets, and verified our validity, reliability and accuracy through simulation experiments.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 引言 1 1.2 相關背景回顧 1 1.3 研究動機與目的 3 1.4 本論文之貢獻 4 1.5 章節安排概述 4 第二章 異常偵測之基本要素 5 2.1引言 5 2.2 時間及空間之異常定義 5 2.2.1 空間異常 5 2.2.2 時間異常 6 2.3 偵測對象 7 2.4 特徵檢測 8 2.4.1 時空興趣點(Space-Time Interest Points) 8 2.4.2 方向梯度直方圖(histogram of oriented gradient, HOG) 10 2.4.3 方向描述子(motion direction descriptor) 11 2.5 機器學習(MACHINE LEARNING) 14 2.6 總結 16 第三章 使用主成份分類器(PCC)做異常偵測 17 3.1 引言 17 3.2 系統架構 17 3.3 三維時空特徵 17 3.4 特徵描述 18 3.4.1 梯度與光流直方圖 19 3.4.2 方向特徵描述 20 3.4.3 速度特徵描述 20 3.5 異常分類器—PCA的原理PRINCIPAL COMPONENT CLASSIFIER (PCC) 21 3.5.1 正常模型訓練 22 3.5.2 計算子空間距離方法 24 3.5.3 決定異常門檻值的方法 25 第四章 實驗 26 4.1 引言 26 4.2 DATASET 與使用平台簡介 26 4.3 參數設定與實驗環境 26 4.4 各類的參數比較選取 28 4.4.1 系統極限效能的比較 34 4.5 不同資料集的模擬結果 37 4.5.1 異常偵錯資料集(UCSD Ped1) 37 4.5.2 異常偵錯資料集(UCSD Ped2) 42 4.5.3 異常活動檢測資料集(Detection of Unusual Crowd Activity) 46 4.6 系統的訓練及測試時間 49 4.7 結語 49 第五章 結論 50 參考文獻 51

    [1] V. Chandola, A. Banerjee, and V. Kumar, ”Anomaly detection: A survey,” ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.
    [2] O. P. Popoola and K. Wang, ”Video-based abnormal human behavior recognition—a review,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 865–878, 2012.
    [3] C. Stauffer and W. E. L. Grimson, ”Learning patterns of activity using real-time tracking,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 747–757, 2000.
    [4] C. Brax, L. Niklasson, and M. Smedberg, ”Finding behavioural anomalies in public areas using video surveillance data,” in Proc. 11th Int. Conf. Inform. Fusion, Cologne, Germany, 2008.
    [5] I. Ivanov, F. Dufaux, T. M. Ha, and T. Ebrahimi, ”Towards generic detection of unusual events in video surveillance,” in Proc. AVSS, 2009, pp. 61–66.
    [6] S. Calderara, C. Alaimo, A. Prati, and R. Cucchiara, ”A real-time system for abnormal path detection,” in Crime Detection and Prevention (ICDP 2009), 3rd International Conference on. IET, 2009, pp. 1–6.
    [7] C. Piciarelli and G. Luca Foresti, ”Surveillance-oriented event detection in video streams,” IEEE intelligent. Systems, vol. 26, no. 3, pp. 32–41, 2011.
    [8] C. C. Loy, T. Xiang, and S. Gong, ”Detecting and discriminating behavioural anomalies,” Pattern Recognition, vol. 44, no. 1, pp. 117–132, 2011.
    [9] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan, ”Semi-supervised adapted hmms for unusual event detection,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 611–618.

    [10] R. R. Sillito and R. B. Fisher, ”Semi-supervised learning for anomalous trajectory detection.” in BMVC, vol. 1, 2008, pp. 035–1.
    [11] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz, ”Robust real-time unusual event detection using multiple fixed-location monitors,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 555–560, 2008.
    [12] R. Mehran, A. Oyama, and M. Shah, ”Abnormal crowd behavior detection using social force model,” in Conf. Computer Vision and Pattern Recognition, 2009, pp. 935–942.
    [13] J. Kim and K. Grauman, ”Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 2921-2928.
    [14] F. Jiang, Y. Wu, and A. K. Katsaggelos, ”A dynamic hierarchical clustering method for trajectory-based unusual video event detection.” IEEE transactions on image processing: a publication of the IEEE Signal Processing Society, vol. 18, no. 4, pp. 907–913, 2009.
    [15] F. Jiang, Y. Wu, and A. K. Katsaggelos, ”Detecting contextual anomalies of crowd motion in surveillance video,” in 2009 16th IEEE International Conference on Image Processing (ICIP). IEEE, 2009, pp. 1117–1120.
    [16] L. Kratz and K. Nishino, ”Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009, pp. 1446–1453.
    [17] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, ”Anomaly detection in crowded scenes.” in CVPR, vol. 249, 2010, p. 250.
    [18] V. Reddy, C. Sanderson, and B. C. Lovell, ”Improved anomaly detection in crowded scenes via cell-based analysis of foreground speed, size and texture,” in CVPR 2011 WORKSHOPS. IEEE, 2011, pp. 55–61.

    [19] K.-W. Cheng, Y.-T. Chen, and W.-H. Fang, ”Abnormal crowd behavior detection and localization using maximum sub-sequence search,” in Proceedings of the 4th ACM/IEEE international workshop on Analysis and retrieval of tracked events and motion in imagery stream. ACM, 2013, pp. 49–58.
    [20] Y. Cong, J. Yuan, and J. Liu, ”Sparse reconstruction cost for abnormal event detection,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011, pp. 3449–3456.
    [21] V. Saligrama and Z. Chen, ”Video anomaly detection based on local statistical aggregates,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2112–2119.
    [22] M. Javan Roshtkhari and M. D. Levine, ”Online dominant and anomalous behavior detection in videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2611–2618.
    [23] C. C. Loy, T. Xiang, and S. Gong, ”Modelling multi-object activity by gaussian processes.” in BMVC, 2009, pp. 1–11.
    [24] O. Boiman and M. Irani, ”Detecting irregularities in images and in video,”
    International Journal of Computer Vision, vol. 74, no. 1, pp. 17–31, 2007.
    [25] X. Cui, Q. Liu, M. Gao, and D. N. Metaxas, ”Abnormal detection using interaction energy potentials,” in Proc. Int’s Conf. Computer Vision and Pattern Recognition (CVPR), 2011, pp. 3161–3167.
    [26] P. Antonakaki, D. Kosmopoulos, and S. J. Perantonis, ”Detecting abnormal human behavior using multiple cameras,” Signal Processing, vol. 89, no. 9, pp. 1723–1738, 2009.
    [27] I. Laptev, ”On space-time interest points,” International Journal of Computer Vision, vol. 64, no. 2-3, pp. 107–123, 2005.
    [28] A. Wiliem, V. Madasu, W. Boles, and P. Yarlagadda, ”Detecting uncommon trajectories,” in Digital Image Computing: Techniques and Applications (DICTA), 2008. IEEE, 2008, pp. 398–404.
    [29] A. Lakhina, M. Crovella, and C. Diot, ”Diagnosing network-wide traffic anomalies,” in ACM SIGCOMM Computer Communication Review, vol. 34, no. 4. ACM, 2004, pp. 219–230.
    [30] A. Lakhina, M. Crovella, and C. Diot, ”Mining anomalies using traffic feature distributions,” in ACM SIG- COMM Computer Communication Review, vol. 35, no. 4. ACM, 2005, pp. 217–228.
    [31] N. Dalal and B. Triggs, ”Histograms of oriented gradients for human detection,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp. 886–893.
    [32] B. K. Horn and B. G. Schunck, ”Determining optical flow,” Artificial intelligence, vol. 17, no. 1-3, pp. 185–203, 1981.
    [33] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, ”A novel anomaly detection scheme based on principal component classifier,” DTIC Document, Tech. Rep., 2003.
    [34] Y.-J. Lee, Y.-R. Yeh, and Y.-C. F. Wang, ”Anomaly detection via online over- sampling principal component analysis,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 7, pp. 1460–1470, 2013.
    [35] Y. Cong, J. Yuan, and J. Liu, ”Abnormal event detection in crowded scenes using sparse representation,” Pattern Recognition, vol. 46, no. 7, pp. 1851–1864, 2013.

    QR CODE