簡易檢索 / 詳目顯示

研究生: 莊水發
Shui-fa Chuang
論文名稱: 微型鑽針芯厚自動量測系統之研究
A Study of the Automated Measuring Systems for the Web Thickness of Micro-drills.
指導教授: 修芳仲
Fang-Jung Shiou
鄧昭瑞
Geo-Ry Tang
口試委員: 范光照
Kuang-Chao Fan
邱奕契
Yih-Chih Chiou
黃正光
Cheng-Kuang Huang
鍾國亮
Kuo-Liang Chung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 微型鑽針芯厚影像檢測非破壞性檢測雷射微測儀雷射共焦儀
外文關鍵詞: non-destructive
相關次數: 點閱:605下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

電子與半導體產業中使用了大量的微型鑽針進行印刷電路板的微細鑽孔作業。為確保鑽針品質,鑽針芯厚特徵的量測為品管檢驗中的關鍵項目。由於傳統的人工檢測費時且容易造成量測上的誤差,因此本研究提出利用機器視覺技術進行破壞性鑽針芯厚量測及以雷射量測儀進行破壞性檢測二種方法。破壞性的檢測程序是先透過影像模組對鑽針進行定位,而後利用鑽針研磨砂輪將鑽針磨至待檢測的截面;接著再將鑽針移動到影像檢測模組進行鑽針截面影像之擷取,最後搭配影像處理與芯厚量測計算方法得該截面之鑽針芯厚值。實踐此方法之硬體系統包含砂輪模組、運動平台、定位視覺模組及芯厚檢測視覺模組等部分,並透過電路控制整合各模組的動作流程。
基於執行上述方法須在破壞鑽針的情況下進行,在若干場合不容易滿足業者希望有效提昇產能的需求,因此本研究亦提出一種非破壞性的芯厚量測方法。此方法利用非接觸式的雷射測微儀量測鑽針外徑值並觀察軸心偏擺,而後配合雷射共焦儀量測鑽針鑽槽深度值,最後經計算並補償偏心量後得到鑽針芯厚值。非破壞性雷射量測系統包含量測與定位取放機構模組、雷射量測模組資料擷取模組等部分,並透過電路控制整合各模組的動作流程。
研究中使用標準鑽針進行實驗,數據資料顯示破壞性量測系統之重現性可達±0.0012mm,而在相同截面與工具顯微鏡的量測值最大差距僅0.0026mm。而非破壞性量測系統之重現性則可達±0.0018mm,而在相同截面與工具顯微鏡的量測值最大差距僅0.0010mm。上述的結果驗證本研究成功地完成兩項自動化檢測系統的開發。


Nowadays, the electronic and semiconductor industries use numerous micro-drills to produce tiny holes on printed circuit boards. Since the web thickness plays a key role to determine the rigidity and chip-removal ability of a micro-drill, the measurement of the web thickness is essential to ensure the quality of products. In order to improve the quality and efficiency of the conventional human inspection process, this work develops two automatic inspection methods based on the technologies of machine vision and laser measurement. In the proposed measuring procedures, the drill to be examined is first positioned at a specific location, which is confirmed by the images from one of optical modules. Next, the drill’s body is ground axially from the tip to a pre-defined cross-section. Another image of the drill’s cross section is then grabbed by the second optical device. Later, the web thickness can be determined through a series of image processing and numerical operations. This integrated destructive measuring system consists of a machine vision module, a grinding module and a two-axis-driven micro-drill fixture.
Because the destructive measuring system previously discussed may not be applicable in some circumstances, a non-destructive measuring method to determine the web thickness of micro-drills has been also developed by this research. Based on the second method, a laser confocal displacement meter (LCDM) is employed to measure the diameter and run-out error of the drill at first. Then, a laser micro-gauge (LMG) is used to scan the profile of the drill and the dual cross-sectional flute depths can be measured. Finally, the web thickness was determined after the amount of the run-out error has been excluded. This integrated laser inspection system includes a LMG, a LCDM and a two-axis-driven micro-drill fixture.
Three types of sample micro-drills are examined by both proposed measuring methods. The experimental data shows that the repeatability of web thickness measurement is approximately equal to ±0.0012mm in the destructive measuring system and ±0.0018mm in the non-destructive measuring system. The results indicate that the systems developed are able to undertake the web thickness measurements for certain micro-drills.

誌謝. I 摘要 II Abstract III 目錄. V 圖索引 VIII 表索引 XII 第一章 緒論 1 1.1 研究動機與目的 2 1.2 文獻回顧 3 1.2.1 鑽針幾何輪廓的設計、研磨製造與切削行為 4 1.2.2 鑽針幾何與缺陷量測 5 1.2.3 鑽針芯厚量測 6 1.3 論文架構 7 第二章 微型鑽針 8 2.1 微型鑽針種類 8 2.2 微型鑽針結構與功能 9 2.3 芯厚的影響 12 2.4 微型鑽針的製造程序 14 2.5 人工微型鑽針芯厚量測方法 16 第三章 破壞性微型鑽針芯厚量測系統 19 3.1 破壞性芯厚影像量測方法 19 3.1.1 鑽針截面之定位 19 3.1.2 芯厚影像量測原理 20 3.2 影像處理工具 29 3.3 影像校正 35 3.3.1 截面定位影像之像素質校正 35 3.3.2 芯厚量測影像之像素質校正 37 3.4 破壞性芯厚影像量測硬體設備 38 3.4.1 運動定位模組 39 3.4.2 研磨砂輪模組 41 3.4.3 定位與芯厚量測視覺模組 44 第四章 非破壞性微型鑽針芯厚量測系統 48 4.1 非破壞性芯厚雷射量測方法 48 4.1.1 鑽針截面之雷射定位 49 4.1.2 鑽針偏擺值的雷射量測原理 49 4.1.3 芯厚雷射量測原理 52 4.2 非破壞性芯厚雷射量測硬體設備 57 4.2.1 整體機構 58 4.2.2 鑽針精密夾頭機構與光學量測模組 59 4.2.3 上下料模組與精密定位模組 61 4.2.4 雷射量測模組 63 第五章 實驗結果與討論 66 5.1 破壞性芯厚影像量測實驗 66 5.1.1 軟體操作與說明 69 5.1.2 實驗結果 70 5.2 非破壞性芯厚雷射量測實驗 75 5.2.1 軟體操作與說明 78 5.2.2 實驗結果 78 5.3 量測結果討論 82 第六章 結論 84 參考文獻 86 附錄. 93 附錄一:雷射微測儀規格與說明一覽表 93 附錄二:雷射共焦儀規格與說明一覽表 94 作者簡介 95

[1]林姿君,“自動化光學檢測專業能力指標與課程發展之研究”,國立台灣科技大學機械工程研究所碩士論文,2009。
[2]陳永增、鄧惠源,“非破壞檢測”,全華圖書,2009。
[3]李洵穎,“鑽針微小化”,http://www.digitimes.com.tw/tw/dt/n
/shwnws.asp?CnlID=10&id=0000154771_Z166LZF38ZU8TO0EP5K9U,2010。
[4]凱基投顧,“印刷電路板產業-鑽針”, http://www.kgi.com.tw
/report/347/03.pdf,2010。
[5]J. M. Morrison, “Ind. Laser Review”, Vol.10, No.11, pp.9-14, 1995.
[6]D. M. Rincon and A. G. Ulsoy, “Complex geometry, rotary inertia and gyroscopic moment effects on drill vibrations”, Journal of Sound and Vibration, pp. 701-715, 1995.
[7]林定皓,“電路板機械加工技術”,台灣電路板協會,2007。
[8]D. F. Galloway, “Some experiments on the influence of various factors on drill performance”, ASME Journal of Engineering for Industry, Vol.79, pp. 191-231, 1957.
[9]S. Fujii, M. F. DeVries and S. M. Wu, “An analysis of drill geometry for optimum drill design by computer-I: drill geometry analysis”, ASME Journal of Engineering for Industry, Vol.92, pp.647-656, 1970.
[10]S. Fujii, M. F. DeVries and S. M. Wu, “An analysis of drill geometry for optimum drill design by computer-II: computer aided design”, ASME Journal of Engineering for Industry, Vol. 92, pp.657-666, 1970.
[11]S. Fujii, M. F. DeVries and S. M. Wu, “An analysis of the chisel edge and the effect of the d-theta relationship on drill point geometry”, ASME Journal of Engineering for Industry, Vol.94, pp.1157-1163, 1972.
[12]S. Fujii, M. F. DeVries and S. M. Wu, “Analysis and design of a drill grinder and evaluation of grinding parameter”, ASME Journal of Engineering for Industry, Vol.94, pp. 1157-1163, 1972.
[13]W. D. Tsai and S. M. Wu, “An mathematical model for drill point design and grinding”, ASME Journal of Engineering for Industry, Vol.101, No.3, pp. 333-340, 1979.
[14]W. D. Tsai and S. M. Wu, “Computer analysis of drill point geometry”, International Journal of Machine Tool Design & Research, Vol.19, pp. 95-108, 1979.
[15]W. D. Tsai and S. M. Wu, “Measure and control of the drill point grinding process”, International Journal of Machine Tool Design & Research, Vol.19, pp. 109-120, 1979.
[16]M. A. Fugelso, “A standard conical point drill grinding machine”, International Journal Machine Tools & Manufacture, Vol.41, pp. 915-922, 2001.
[17]K. W. Fuh and W. C. Chen, “Cutting performance of thick web drills with curved primary cutting edges”, International Journal Machine Tools & Manufacture, Vol.35, pp. 975-991, 1995.
[18]W. C. Chen, K. W. Fuh, C. F. Wu and B. R. Chang, “Design optimization of a split point drill by force analysis”, Journal of Materials Processing Technology, Vol.58, pp. 314-322 ,1996.
[19]B. J. Agullo, F. S. Cardona and S. C. Vinas, “On the design of milling cutters or grinding wheels for twist drill manufacture, a CAD approach”, Proceeding 25th Int. Machine Tool Design Research Conf., pp. 315-320.
[20]S. Kaldor, A. M. Rafael and D. Messinge, “On the CAD of profiles for cutters and helical flutes – geometrical aspects”, Annals of the CIRP, Vol.37, pp. 53-56, 1988.
[21]K. F. Ehmann, “Grinding wheel profile definition for the manufacture of drill flutes”, Annals of the CIRP, Vol.39, pp. 153-156, 1990.
[22]S. K. Kang, K. F. Ehmann and C. Lin, “A CAD approach to helical groove machining -Part I : mathematical model and model solution”, International Journal Machine Tools & Manufacture, Vol.36, pp. 141-153, 1996.
[23]S. K. Kang, K. F. Ehmann and C. Lin, “A CAD approach to helical groove machining -Part II : number evaluation and sensitivity analysis”, International Journal Machine Tools & Manufacture, Vol.37, pp. 101-117, 1997.
[24]H. C. Chyan and K. F. Ehmann, “Development of curved helical micro-drill point technology for micro-hole drilling”, Mechatronics, Vol.8, pp. 337-358, 1998.
[25]陳志強,“微鑽頭幾何誤差模式研究”,國立台灣海洋大學機械與輪機工程系碩士論文,2004。
[26]C. N. Ramirez, and R. J. Thornhill, “Automated measurement of flank wear of circuit board drills”, Journal of Electronic Packaging, Vol 114, Issue 1, pp.93-96, 1992.
[27]莊有達,“應用電腦影像處理于辨別微鑽頭分離之檢測研究”,逢甲大學工業工程研究所碩士論文,2002。
[28]F. C. Tien, C. H. Yeh and K. H. Hsieh, “Automated visual inspection for micro-drills in printed circuit boardproduction”, International Journal of Production Research, Vol.42, No.12, pp. 2477-2495, 2004.
[29]官志中,“PCB 微型鑽頭電腦輔助檢測系統之研製”,國立台灣科技大學機械研究所碩士論文,1999。
[30]吳孟轅,“自動影像檢測PCB 微型鑽針幾何輪廓之研究”,國立台灣科技大學機械研究所碩士論文,2001。
[31]W. Zhang, Y. Peng, F. He and D. Xiong, “Drill flank measurement and flank/flute intersection determination”, International Journal of Machine Tools & Manufacture, pp. 666-676, 2008.
[32]F. J. Shiou, C. T. Wu and C. Y. Chen, “Development of a computer vision flank wear measurement system for microdrills”, Proceedings of the International Symposium on Mechanical Measurements (ISPMM’2004), Aug. Beijing China, pp. 24-28, 2004.
[33]梁為翔,“以微鑽頭鑽削PCB 板之最佳鑽削參數及其磨耗檢測之研究”,國立台灣科技大學機械研究所碩士論文,2003。
[34]C. K. Huang, L. G Wang, H. C. Tang and Y. S. Tarng, “Automatic laser inspection of outer diameter, run-out and taper of micro-drills”, Journal of Materials Processing Technology, pp. 306-313, 2006.
[35]Y. Peng, H. Kumehara and W. Zhang, “Measurement of drill point geometry by using laser sensor”, International Journal of Machine Tools & Manufacture, pp. 682-668, 2007.
[36]W. J. Zhang, D. Li, F. Ye and H. Sun, “Automatic optical defect inspection and dimension measurement of drill bit”, IEEE International Conference on Mechatronics and Automation, pp. 95-100, 2006.
[37]G. Duan, Y. W. Chen and T. Sakekawa, “Automatic optical inspection of micro drill bit in printed circuit board manufacturing based on pattern classification”, IEEE International Instrumentation and Measurement Technology Conference, pp. 279-283, 2008.
[38]林敬智,“鑽針芯厚量側系統之研製”,台灣科技大學碩士論文,2004。
[39]陳宣宇,“微型鑽針芯厚量測系統於鑽針偏擺下之影響與改善”,台灣科技大學碩士論文,2007。
[40]洪德一,“鑽針芯厚自動化量測設備開發”,台灣科技大學碩士論文,2009。
[41]尖點科技股份有限公司,網址 http://www.topointech.com.
tw/index.htm, 2010.
[42]W. C. Chen, “Applying the finite element method to drill design based on drill deformations”, Finite Element in Analysis and Design, pp. 57-81, 1997.
[43]台灣佑能工具股份有限公司教育訓練課程,2003。
[44]立川科技,網址http://www.tachikawa.com.tw/cht/profile.htm, 2010.
[45]Mitutoyo Corporation, “Measuring microscopes catalogue”,
Available at http://www. mitutoyo.co.jp/eng/products
/gazoukogaku/Optical_2.pdf, 2010.
[46]F. L. Litvin, “Theory of gearing”, NASA Reference Publication 1212, pp. 87-92; pp. 241-295, 1989.
[47]F. L. Litvin, “Gearing geometry and applied theory”, Prentice-Hall, pp. 258-287, 1994.
[48]W. T. Chang and L. I. Wu, “Computerized tolerance analysis of disk cam mechanisms with a roller follower”, Engineering with Computers, pp. 247-260, 2009.
[49]J. S. Arora, “Introduction to optimum design”, McGraw-Hill Book Company, pp. 574-582, 1989.
[50]National Instrument Corp., “NI vision concepts manual”, pp. 3.1-3.18; pp. 8.1-8.15; pp. 9.1-9.31; pp. 11.1-11.22, 2007.
[51]R. C. Gonzalez and R. E. Woods, “Digital image processing”, 2nd ed., Prentice-Hall, pp. 75-146; pp. 519-566; pp. 595-611, 2002.
[52]詮洲光電,網址http://www.onset.com.tw/, 2010.
[53]台灣東方馬達,網址http://www.orientalmotor.com.tw/, 2010.
[54]肯定科技,網址http://www.surevision.com.tw/campany.htm/, 2010.
[55]Navitar Inc., Available at http://www.navitar.com/, 2010.
[56]NAKANISHI, “Motors & Spindles, Micro-grinders”, 2008.
[57]坦聯企業,網址http://www.tanlian.tw/, 2010.
[58]北安實業網址,http://www.panix.com.tw, 2010.
[59]SMC速睦喜股份有限公司,網址http://www.smc.com.tw/, 2010.
[60]上銀科技,網址http://www.hiwin.com.tw/index.aspx, 2010.
[61]Tokyo Opto-Electronics Corporation, Laser micro-gauge. Available at http://www.toe.co.jp/lmghome_e.htm, 2010.
[62]Keyence Corporation, Laser Confocal Displacement Meter Catalogue. Available at http://www.keyence.com/dwn/lt_9000.
pdf, 2010.
[63] T. G. Beckwith, R. D. Marangoni, and J. H. Lienhard, “Mechanical measurements”, 5th ed., Pearson Education Taiwan Ltd, pp. 45-125, 2004.

QR CODE