簡易檢索 / 詳目顯示

研究生: 黃竣楷
Jyun-kai Huang
論文名稱: 具核心圍束鋼筋之高強度矩形RC 柱研究
Study on High-Strength Rectangular RC Columns with Kernel Confined Rebars
指導教授: 林克強
Ker-Chun Lin
口試委員: 邱建國
Chien-Kuo Chiu
李宏仁
Hung-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 242
中文關鍵詞: 高強度鋼筋混凝土柱核心鋼筋高軸力變形容量RC柱構件勁度
外文關鍵詞: High-Strength concrete column, Kernel Confined bars, High Axial Load, Deformation capacity, RC Column member stiffness
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統柱構件為提供高效率的彎矩強度容量,將縱向
主筋配置於斷面外圍。隨
著建築物樓層數的提高,底層柱的受力越大,此 縱向主筋配置型式,往往造成過
密的主筋排列,若 加上較密的耐震箍筋需求,不利混凝土的澆置。另從過去建物
震害調查與研究成果發現,此傳統配置縱向主筋於外圍的柱構件,在大地震力作
用下,常因主筋在混凝土保護層剝後發生挫屈,進而導致耐震能力的衰減而破壞。
本文針對高強度鋼筋混凝土柱構件將部分縱向主筋移至柱斷面內混凝土圍束核
心區,期以延緩整體主筋的挫屈,且探討具此核心縱向主筋之 RC柱構件在高軸
力作用下的耐震性能 。 本研究共測試 6組斷面為 600××600 mm的柱構件試體 混
凝土採用強度 fc’=70 MPa 縱向主筋與橫向箍筋分別使用 SD 550與 SD 790 強
度等級鋼筋 ,主要設計參數為核心主筋量與配置方式、箍筋的設計強度與主筋受
圍束支數等。試驗結果顯示,依 ACI 318-19規範由柱軸力控制公式計算而得的
圍束鋼筋量,可提供柱構件 3%弧度的層間變形容量。本研究成果也發現,有、
無配置核心鋼筋之柱構件極限強度,可由柱構件理論強度保守估計,強度平均比
值為 1.29;亦可由 XTRACT考慮箍筋圍束效應分析所得的極限強度準確估計,強
度平均比值為 0.98。 本 試驗結果顯示 在 0.5Agfca’的高軸力作用下 配置 20至
40%之 KC bar柱構件與傳統主筋配置於外圍的柱構件相較,其強度與變形 容量
相近 。 由本研究高軸力的柱構件試驗結果也證實,若柱構件欲保有 3%弧度的層
間變形容量,其箍筋的設計強度級應可提升至 790 MPa。 另外,在勁度方面, 軸
向勁度分析結果發現, 採外圍配置的方式軸向勁度會隨著軸力增加而改變。 部分
主筋採內核心配置的方式在不同軸力作用下,有較穩定的勁度表現。 由側向勁度
結果顯示 0.5Agfca’的軸壓作用下 可使用 層間變形 0.25%弧度 的試體反應推估
彈性勁度 。


In order to provide high-efficiency bending moment strength capacity of traditional column members, the longitudinal main reinforcements are arranged on the periphery of the section. As the number of floors in the building increases, the greater the force on the bottom column. This type of longitudinal main reinforcement often results in an over-dense reinforcement arrangement. If the demand for denser seismic stirrups is added, it is unfavorable for concrete pouring. In addition, the results of investigations and researches on earthquake damage of buildings in the past have found that this traditional column member with longitudinal main reinforcements on the periphery is often subjected to large earthquake forces because the main reinforcements tend to buckle after the concrete protective layer is peeled off, which leads to the attenuation of seismic resistance. In this paper, for high-strength reinforced concrete column members, part of the longitudinal main reinforcement is moved to the kernel area of the concrete envelope in the column section. The purpose is to delay the buckling of the overall main reinforcement, and to explore the seismic performance of RC column members with this kernel longitudinal main reinforcement under high axial forces. In this study, a total of 6 specimens of column members with a cross-section of 600×600 mm were tested. The concrete uses the strength fc’=70 MPa, and the longitudinal main reinforcement and the transverse stirrup are respectively SD 550 and SD 790 strength grade steel bars. The main design parameters are the amount and configuration of the kernel main reinforcement, the design strength of the stirrup and the number of bundles of the main reinforcement. The test results show that the amount of confined steel bars calculated from the column axial force control formula according to the ACI 318-19 specification can provide the interlayer deformation capacity of the column members with drift ratio 3% radian. The results of this study also found that the ultimate strength of column members with and without kernel reinforcement can be conservatively estimated from the theoretical strength of the column members, and the average strength ratio is 1.29. The ultimate strength can also be accurately estimated by XTRACT considering the effect of hoops around the stirrup, and the average strength ratio is 0.98. The test results show that under the action of high axial load of 0.5Agfca’, the strength and deformation capacity of column members with 20-40% KC bar are similar to those with traditional main ribs arranged on the periphery.The test results of the column member with high axial load in this study also confirmed that the design strength level of the stirrup is 790 MPa, and the column member can maintain the capacity of drift ratio 3% radian of inter-layer deformation.In addition, in terms of stiffness, the results of the axial stiffness analysis found that the axial stiffness of the peripheral configuration will change as the axial force increases.Part of the main reinforcement adopts the internal core configuration mode, which has a relatively stable axial stiffness performance under the action of different axial forces.The results of the lateral stiffness show that under the action of 0.5Agfca’ axial compression, the elastic stiffness can be estimated using the response of the sample with drift ratio 0.25% radians of interlayer deformation.

摘要 ABSTRACT 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的與方法 第二章 文獻回顧 2.1 圍束公式 2.2 混凝土圍束模型 2.2.1 Theoretical Stress-Strain Model for Confined Concrete 2.3 Confinement Reinforcement Design for Reinforced Concrete Columns(2008)[5] 2.4 Improving Column Confinement(2009)[7][8] 2.5 Design of Seismic Confinement of Reinforced Concrete Columns Using High Strength Materials(2013)[13] 2.6 柱構件強度 2.6.1 剪力強度計算 2.6.2 撓曲強度 2.7 國內鋼筋混凝土柱構件相關研究 2.7.1 鋼筋混凝土柱構件之圍束與強度耐震性能提升研究 (2018)[16] 2.7.2 鋼筋混凝土雙核心柱於高軸力下 之耐震性能研究 (2020)[17] 第三章 試驗計畫 3.1 試驗計畫 3.2 試體製作 3.2.1 材料準備 3.2.2 鋼筋加工 3.2.3 應變計黏貼 3.2.4 鋼筋籠綁紮 3.2.5 模板組立 3.2.6 試體澆置 3.3 試驗系統佈置試驗系統佈置 3.3.1 多軸試驗系統多軸試驗系統((Multi-Axial Testing System, MATS)) 3.4 量測系統 3.4.1 外部量測 3.4.1.1 LVDT位移計 3.4.1.2 裂縫觀察 3.4.1.3 光學影像量測 3.4.2 內部量測內部量測 3.4.2.1 鋼筋應變量測 3.5 試驗程序 3.5.1 軸壓載重試驗 3.5.2 水平反覆載重試驗 3.6 材料試驗材料試驗 3.6.1 混凝土材料試驗 3.6.2 鋼筋材料試驗鋼筋材料試驗 第四章 試驗過程 4.1 NCK0S8P5試驗過程與裂縫發展試驗過程與裂縫發展 4.2 NCK3S8P5試驗過程與裂縫發展試驗過程與裂縫發展 4.3 NCK2S8P5試驗過程與裂縫發展試驗過程與裂縫發展 4.4 NCK4S8P5試驗過程與裂縫發展試驗過程與裂縫發展 4.5 TCK4S9P5試驗過程與裂縫發展試驗過程與裂縫發展 4.6 TCK0S8P5試驗過程與裂縫發展試驗過程與裂縫發展 第五章 分析與討論 5.1 試體強度結果比較 5.1.1 試體實際強度試體實際強度 5.1.1.1主筋內移配置比較 5.1.1.2斷面內核心外加主筋比較 5.1.1.3圍束需求量之箍筋計算強度 5.1.1.4主筋圍束方式 5.1.2 破壞形式 5.2 試體變形性能結果比較 5.2.1 變形能力討論 5.2.1.1主筋內移配置比較 5.2.1.2內核心外加主筋比較 5.2.1.3圍束需求量之箍筋計算強度 5.2.1.4主筋圍束方式 5.2.2 圍束箍筋強度 5.3 試體勁度 5.3.1 軸向勁度 5.3.2 側向勁度 5.4 裂縫發展討論 5.4.1 各試體裂縫發展 5.4.2 文獻比較 5.5 應變計比較 5.5.1 主筋應變 5.5.1.1軸壓試驗 5.5.1.2水平反覆試驗 5.5.2 箍筋應變計 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 附錄A各尖峰位移角之實際照片 附錄B應變計之發展比較 附錄C試體設計圖

[1] ACI Committee 318,Building Code Requirements for Structural Concrete and Commentary ,American Concrete Institute (ACI), Farmington Hills.,2019.
[2] Aoyama, H., Design of Modern High-rise Reinforced Concrete Structures, Imperial College Press, London 2002.
[3] 內政部營建署,「混凝土結構設計規範」,內政部 108年 2月 25日台內營字第
1080802216號令修正發布,臺北市, 2019。
[4] 中華民國結構工程學會,「高強度鋼筋混凝土結構設計手冊」,科技圖書,台北市
2017。
[5] Paultre, P., and Légeron, F., “Confining Reinforcement Design for Reinforced Concrete Columns.” Journal of Structural Engineering, ASCE, V. 134, No. 5, May, pp.738-749.,2008.
[6] J. B. Mander, M.J.N. Priestly, and R. Park, “Theoretical Stress-Strain Model For Confined Concrete, Journal of Structural Engineering, ASCE, V. 134, NO. 5 May, pp.738-749.,1988.
[7] Elwood, K. Maffei, Riederer, K. and Telleen, Improving Column Confinement-Part1: Assessment of design provisions,”Concrete International American Concrete Institute,Dec.,2009.
[8] Elwood, K. Maffei, Riederer, K. and Telleen, Improving Column Confinement-Part2: Proposed new provisions for the ACI 318 Building Code,”Concrete International American Concrete Institute,Dec. 2009.
[9] ACI Committee 318, “Building Code Requirement for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), ” American Concrete Institute,Farmington Hills,Mich.,2008.
[10] Canadian Standards Association,“Design of Concrete Structures,”CSA A23.3-04 ,Mississauga, ON, Canada, 2004, 258pp.
[11] Standards Association of New Zealand, “Concrete Design Standard, NZS3101:2006, Part 1”,222pp.and Commentary on the Concrete Design Standard,NZS 3101:2006, Part 2,”Wellington,New Zealand,2006,646 pp.
[12] ACI Innovation Task Group 4,“ Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications(ITG-4.3R-07),” American Institute, Farmington Hill, MI,2007, 66 pp.
[13] Shyh-Jiann Hwang, Guann-Jye Hwang, Feng-Chan Chang, Ying-Chang Chen, Ker-Chun Lin, Design of Seismic Confinement of Reinforced Concrete Columns Using High Strength ACI Special Publication, Vol. 293, pp. 1-14.
[14] ACI Committee 318, “Building Code Requirements for Structural Concrete and Commentary.”, American Concrete Institute, Farmington Hills, 2014.
[15] Whitney, C. S., “Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression,” Journal of American Concrete Institute, Vol.33, 1937.
[16] 陳勇亲,「鋼筋混凝土柱構件之圍束與強度耐震性能提升研究」,碩士論文,國立台
灣科技大學, 2018。
[17] 林克強, 「鋼筋混凝土雙核心柱於高軸力下之耐震性能研究」 鋼筋混凝土與鋼結構
設計技術研討會 ,台北市 2020。
[18] CNS 1231 「工地混凝土試體製作及養護法」,中華民國國家標準 2015。
[19] TRC and Charles Chadwell, Ph.D., P.E. (2008), XTRACT-v. 3.0.8.
[20] ASCE standard ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures., American Society of Civil Engineers.,2016.
[21] 張豐展,「高強度鋼筋混凝土圍束效應研究」,碩士論文,國立台灣大學 2010。
[22] 陳盈璋,「高強度 RC柱耐震圍束效應之研究」,碩士論文,國立台灣大學 2011。
[23] 黃冠傑,「 RC柱耐震圍束之研究」,碩士論文,國立 台灣大學 2013。
[24] 廖苑儀,「普通強度 RC柱耐震圍束之研究」,碩士論文,國立台灣大學 2014。
[25] 劉澄州,「預鑄高強度鋼筋混凝土柱雙曲率反覆載重行為」,碩士論文,國立台灣科
技大學 2014。
[26] 呂佳明,「主筋與一筆箍平面配置誤差對 RC柱構件力學行為之影響」 ,碩士論文
國立中央大學土木系, 2018。
[27] 歐昱辰、 蔡東均 ,「高強度鋼筋混凝土柱之設計」,中國土木水利工程學刊,第三十
卷,第三期, pp.223-229 2018。

無法下載圖示 全文公開日期 2024/08/20 (校內網路)
全文公開日期 2026/08/20 (校外網路)
全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE