簡易檢索 / 詳目顯示

研究生: 謝欣宏
Hsin-Hung Hsieh
論文名稱: 以設計模式為基礎之WiMAX和LTE無線網路模擬系統實作之研究
Study on using Design Patterns to Implement a Simulation System for WiMAX amd LTE Wireless Network
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
余聲旺
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 154
中文關鍵詞: 全球互通微波存取長程演進技術設計模式模擬器物件導向設計統一塑模語言
外文關鍵詞: WiMAX, LTE, design pattern, simulator, object oriented design, UML
相關次數: 點閱:408下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在無線網路研究領域裡,網路模擬軟體一直是研究人員用來觀測及評估其研究概念的重要工具。在經費有限的現實考量下,非商用開放原始碼模擬軟體常成為學術界的首選。由於學術研究具備了創新與超越的本質,所以常面臨現有模組功能不足而需新增或修改的情形。若選用系統架構的先天體質不佳,日後不論是維護、修改或是擴充功能都將變得困難且費時費力。因此,如何選擇一個合適的模擬軟體是一個重要的決定。
      為了使模擬軟體的系統架構具備擴充彈性及模擬結果具備可信度,本論文提出以設計模式 (Design Patterns) 作為系統架構設計規範的想法,並提出一個網路模擬器架構,稱為 CCG 網路模擬器 (CCG network simulator; CCGns)。CCGns 遵循 IEEE 802.16-2009 標準,使用Java程式語言撰寫,遵從物件導向設計原則,將設計模式運用於系統架構中,是一個以離散事件為基礎的虛擬網路模擬器。由八個套件組成,分別是實體層 (physical layer; PHY)、媒體存取控制層 (media access control layer; MAC)、網路層 (network layer; NET)、事件 (event; EVT)、裝置 (device; DEV)、拓樸 (topology; TPY)、排程 (scheduler; SCH)、和報告 (report; RPT) 套件。主要貢獻包含了六個部分:在實體層套件中提出一個可更換訊框結構的架構、一個結合了實體位址與參考位址定址方法的訊框結構建立方法、以及一個二階段式最小變異數頻寬分配演算法;在媒體存取控制層套件中提出了一個可調整規模的訊息管理與處理架構;在拓樸套件中提出了一個適用於多重跳躍中繼網路架構的建立和操作方法;在排程套件中提出了一個以複數因子為基礎具備同類比較能力的排程單元為基礎的通用排程操作介面架構。
      本論文不是第一個將設計模式運用於無線網路模擬軟體系統架構的研究,但運用的設計範式數量及種類是最多的,並提供統一塑模語言 (Unified Modeling Language; UML) 圖說明系統架構。在模擬結果方面,特別注重控制訊息處理程序對時間相關的效能評估項目的影響,例如控制訊息的類型、數量和處理程序對輸出資料量、封包延遲時間、封包佇列長度、封包等待時間、以及封包丟棄率的影響,並以數學平均值計算方式驗證模擬結果,以證實此系統架構具備精確的可信度。相信本論文提出的模擬器架構對於需要實作網路模擬軟體的研究人員將會有極大助益。


    A network simulator always is an important tool to observe and evaluate the study concept for wireless networks. Considering the restriction of the limited budget, the non-commercial open source simulation software often becomes the top choice of academia. Since the natures of academic study are innovation and excellence, a simulator frequently encounters that the existing modular functions are inadequate and need to be appended or modified. If a selected simulator inherently has poor architecture, the maintenance, recondition, and expansion of functions will become more difficult and more time-consuming in the future, while it is difficult to understand and reuse by the successors. Therefore, how to select a most suitable simulator is an important issue.
    In order to make a simulator have flexible architecture and believable results, design patterns are proposed as the norms to design system architecture. To realize this idea, we surveyed six most used simulators, i.e., J-Sim, NS-2, NS-3, OMNet++, OPNET, and QualNet, to ponder their system architectures and design concepts from the source codes and the related literatures of the modular function expansion. We propose a network simulator architecture, named as CCG network simulator (CCGns), which is a discrete-event virtual network simulator and follows the IEEE 802.16-2009 standard. CCGns obeys the object oriented design principles and is coded by the Java language. CCGns comprises eight packages for physical layer (PHY), medium access control layer (MAC), network layer (NET), events (EVT), devices (DEV), topologies (TPY), scheduler (SCH), and reports (RPT), respectively. The main contribution includes six aspects which propose an exchangeable frame structure architecture (AEFSA), a combination of physical address and reference address to build frame structure (CPARABFS), a two-stage minimum variance bandwidth allocation (TSMVBA), a scalable MAC messages management and processing architecture (SM3PA), an applicable for multi-hop relay network architecture (AMRNA), and a comparable compound factors-based common scheduler operating interface architecture (C2FCSOIA).
    To the best of our knowledge, this article is not the first one to apply the design patterns for the simulator architectures of wireless network, but we use more design patterns and types than the others and also provide the unified modeling language (UML) figures to explain the system architectures. We particularly focus on how the management procedure of control messages influences the time-related performance evaluation metrics, e.g., how the amount and processing time of different control messages affect data output rate, packet delay, packet queue length, packet waiting time and packet drop ratio. By using mathematic calculation to verify the simulation results, the proposed system architecture has been proven to possess excellent fidelity. We hope this study will benefit researchers who need to implement their network simulators.

    摘 要 IV Abstract VI 誌 謝 VIII 目 次 IX 圖目次 XIV 表目次 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節概要 5 第二章 相關研究 6 2.1 WiMAX 協定介紹 6 2.1.1 實體層 7 2.1.1.1 OFDMA技術 7 2.1.1.2 OFDMA 訊框結構 9 2.1.1.3 OFDMA訊框容量 12 2.1.2 媒體存取控制層 14 2.1.2.1 網路拓樸建立 15 2.1.2.2 管理訊息管理與處理程序 15 2.1.2.3 頻寬請求與授予 16 2.1.2.4 排程模組與服務品質 16 2.1.2.5 連線建立與維護 17 2.1.3 中繼網路架構 17 2.1.3.1 穿透式中繼架構 18 2.1.3.2 非穿透式中繼架構 20 2.1.3.3 混和式與共存式中繼架構 22 2.2 LTE 協定介紹 26 2.2.1 實體層傳輸技術 28 2.2.2 傳播路徑損耗模型 29 2.2.3 訊框架構和系統容量 30 2.2.4 異質網路與中繼架構 33 2.2.5 載波聚合技術介紹 35 2.3 網路模擬器介紹 38 2.3.1 J-Sim 40 2.3.2 Network Simulator-2 40 2.3.3 Network Simulator-3 42 2.3.4 OMNeT++ 43 2.3.5 OPNET 44 2.3.6 QualNet 45 2.4 WiMAX 擴充模組 46 2.4.1 NS-2 擴充模組 47 2.4.2 NS-3 擴充模組 48 2.4.3 其他擴充模組 50 2.5 設計模式介紹 51 2.5.1 生成模式介紹 52 2.5.2 結構模式介紹 53 2.5.3 行為模式介紹 54 第三章 CCG網路模擬器 56 3.1 CCGns 套件說明 56 3.1.1 PHY 套件說明 56 3.1.1.1 AEFSA 58 3.1.1.2 CPARABFS 59 3.1.1.3 TSMVBA 59 3.1.2 MAC 套件說明 63 3.1.3 NET 套件說明 69 3.1.4 EVT 套件說明 70 3.1.5 DEV 套件說明 71 3.1.6 TPY 套件說明 73 3.1.7 SCH 套件說明 78 3.1.8 RPT 套件說明 80 3.2 CCGns 模組架構及功能 81 3.2.1 PHY 套件程式模組說明 81 3.2.2 MAC套件程式模組說明 86 3.2.3 NET 套件程式模組說明 87 3.2.4 EVT套件程式模組說明 88 3.2.5 DEV套件程式模組說明 90 3.2.6 TPY套件程式模組說明 91 3.2.7 SCH 套件程式模組說明 93 3.2.8 RPT套件程式模組說明 93 3.2.9 SYS程式模組說明 94 3.3 CCGns 未來藍圖 95 3.3.1 以Web服務為基礎的三層式架構 95 3.3.2 動態通道模型的建立 96 3.3.3 增加載波聚集技術模組 97 3.3.4 支援行動用戶模擬功能 98 第四章 模擬情境與結果 100 4.1 模擬情境與評估項目 100 4.1.1 模擬情境 100 4.1.2 評估項目 101 4.1.2.1 輸出資料量 101 4.1.2.2 封包延遲時間 102 4.1.2.3 封包佇列長度 103 4.1.2.4 封包等待時間 103 4.1.2.5 封包丟棄率 104 4.2 WiMAX模擬結果 105 4.2.1 均勻排程法模擬結果 105 4.2.1.1 上行子訊框輸出資料量 106 4.2.1.2 平均封包延遲時間 107 4.2.1.3 平均封包佇列長度 111 4.2.1.4 平均封包等待時間 115 4.2.1.5 平均封包丟棄率 116 4.2.2 隨機排程法模擬結果 117 4.2.3 輪詢排程法模擬結果 122 4.3 LTE 模擬結果 127 4.3.1 訊框資料輸出量 128 4.3.2 平均封包延遲時間 129 4.3.3 平均封包佇列長度 132 4.3.4 平均封包等待時間 133 4.3.5 平均封包丟棄率 135 第五章 結論 137 參考文獻 138 附錄A: UML圖 147 A-1:時槽工廠模組 UML 圖 147 A-2:訊框建築模組 UML 圖 148 A-3:流量產生器 UML 圖 149 A-4:事件套件模組 UML 圖 150 A-5:基本裝置類別 UML 圖 151 A-6:角色裝置類別 UML 圖 152 A-7:排程模組 UML 圖 153 A-8:報告套件 UML 圖 154

    [1] “IEEE Standard for Local and Metropolitan area networks, Part 16: Air Interface for Broadband Wireless Access Systems,” 2009.
    [2] “TIOBE” [Online] Available: http://www.tiobe.com/tiobe_index?page=index
    [3] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems,” IEEE Std. 802.16d-2004.
    [4] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers fro Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” IEEE Std. 802.16e-2005.
    [5] H. Yaghoobi, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN,” Intel Technology Journal, vol. 8, Issue 3, 2004.
    [6] IEEE 802 Working Group, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification,” IEEE Std. 802.16jTM-2009.
    [7] J. Rakesh, W. Vishal A., and U. Dalal, “A Survey of Mobile WiMAX IEEE 802.16m Standard,” International Journal of Computer Science and Information Security (IJCSIS), vol. 8 No. 1, Apr. 2010.
    [8] C. So-In, R. Jain, and A.-K. Al Tamimi, “Capacity Estimation of IEEE 802.16e Mobile WiMAX Networks,” IEEE Communications Magazine, special issue on Mobile WiMAX, pp. 132-141, vol. 47, Issue 6, June 2009.
    [9] C. So-In, R. Jain, and A.-K. Al Tamimi, “Capacity Evaluation for IEEE 802.16e mobile WiMAX,” Journal of Computer Systems, Networks, and Communications (JCSNC) - Special issue on WiMAX, LTE, and WiFi interworking archive, Jan. 2010.
    [10] E. L. Hahne and M. Hill, “Round-robin scheduling for max-min fairness in data networks,” IEEE Journal on Selected Areas in Communications, vol. 9, Issue 7, Sep. 1991.
    [11] W. Yang, S. Chan, M. Zukerman, and R. J. Harris, “Priority-Based Fair Scheduling for Multimedia WiMAX Uplink Traffic,” Proceedings of IEEE International Conference on Communication (ICC), pp.301-305, May 2008.
    [12] J. Lakkakorpi, A. Sayenko, and J. Moilanen, “Comparison of Different Scheduling Algorithms for WiMAX Base Station: Deficit Round-Robin vs. Proportional Fair vs. Weighted Deficit Round-Robin,” IEEE Wireless Communications and Networking Conference, pp.1991-1996, 2008.
    [13] C.-L. Li, “Study on Frame Structure for Hybrid Multihop Relay Network in IEEE 802.16j,” Master Thesis, 2010.
    [14] 3GPP TS 36.300 Release 9, “Overall description, ” Mar. 2010.
    [15] 3GPP TS 36.300 Release 10, “Overall description, ” Sept. 2013.
    [16] 3GPP TR 36.814 Release 9, “Further advancements for E-UTRA physical layer aspects,” Mar. 2010.
    [17] 3GPP TS 22.368 Release 13, “Service requirements for Machine Type Communications; Stage1,” Jun 2014.
    [18] D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, “LTE release 12 and beyond,” IEEE Communications Magazine, Vol. 51, Issue: 7, pp.154-160, 2013.
    [19] 3GPP TR 36.888 Release 12, “Study on provision of low-cost Machine Type Communications User Equipments based on LTE,” Jun. 2013.
    [20] H. Holma and A. Toskala, “LTE for UMTS:OFDMA and SC-FDMA Based Radio Access,” Apr. 2009.
    [21] 3GPP TS 36.211 Release 10, “Physical Channels and Modulation, ” Sep. 2011.
    [22] 3GPP TR 36.931 Release 9, “Radio Frequency (RF) requirements for LTE Pico Node B,” Mar. 2011.
    [23] ITU-R Recommendation P.1238: “Propagation data and prediction methods for the planning of indoor Radiocommunication systems and radio area networks in the frequency rang 900 MHz to 100 GHz”.
    [24] 3GPP TS 36.213 ver.10.3.0, “Physical layer procedures, ” Sep. 2011.
    [25] M. T. Kawser, N. I. B. Hamid, N. Hasan, M. S. Alam, and M. M. Rahman , “Downlink SNR to CQI Mapping for Different Multiple Antenna Techniques in LTE,” International Journal of Information and Electronics Engineering, vol. 2, No. 5, Sep. 2012.
    [26] J. Blumenstein, J. Colom, J. Prokopec, and M. Rupp, “Simulating the Long Term Evolution Uplink Physical Layer,” ELMAR, 2011 Proceedings, pp. 141-144, 14-16 Sep. 2011.
    [27] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo, O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” Wireless Communications, IEEE , vol. 18, no.3, pp.10-21, June 2011.
    [28] Qualcomm Incorporated, “LTE Advanced: Heterogeneous Networks”, Feb 2010.
    [29] 3GPP R1-082468, “Carrier aggregation in LTE-Advanced,” Ericsson, July 2008.
    [30] L. Hogie, P. Bouvry, and F. Guinand, “An Overview of MANETs Simulation,” In Electronic Notes in Theoretical Computer Science, Proc. of 1st International Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord’05), LNCS, pp.81-101, Namur, Belgium, April 2005. Elsevier.
    [31] S. Siraj, A. K. Gupta, and R. Badgujar, “Network Simulation Tools Survey,” International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), vol. 1, Issue 4, pp-201-210, June 2012.
    [32] S. Duflos, G. L. Grand, A. A. Diallo, C. Chaudet, A. Hecker, C. Balducelli, F. Flentge, C. Schwaegerl, and O. Seifert, “List of available and suitable simulation components,” Technical report, Ecole Nationale Superieure des Telecommunications (ENST), Sep. 2006.
    [33] L. Begg, W. Liu, L. Pawlikowski, S. Perera, and H. Sirisena, “Survey of simulators of Next Generation Networks for Studying Service Availability and Resilience,” Technical Report TR-COSC 05/06, Department of Computer Science & Software Engineering, University of Canterbury, Christchurch, New Zealand, February 2006.
    [34] N. I. Sarkar and S. A. Halim, “A Review of Simulation of Telecommunication Networks: Simulators, Classification, Comparison, Methodologies, and Recommendations,” Cyber Journals: Multidisciplinary Journals in Science and Technology. Special Issue, Journal of Selected Areas in Telecommunications (JSAT), vol. 2(3), pp.10 –17, Mar. 2011.
    [35] A. Kumar, S. K. Kaushik, R. Sharma, and P. Raj, “Simulators for Wireless Networks: A Comparative Study,” International Conference on Computing Sciences (ICCS), pp.338-342, 2012.
    [36] S.-M. Huang, Y.-C. Sung, S.-Y. Wang, and Y.-B. Lin, “NCTUns Simulation Toole for WiMAX Modeling,” Third Annual International Wireless Internet Conference, Oct. pp. 22-24, 2007.
    [37] J. Lessmann, P. Janacik, L. Lachev, and D. Orfanus, “Comparative Study of Wireless Network Simulators,” Seventh International Conference on Networking, pp.517-523, 2008.
    [38] E. Weingartner, H. vom Lehn, and K. Wehrle, “A Performance Comparison of Recent Network Simulators,” IEEE International Conference on Communications (ICC), pp.1-5, June 2009.
    [39] A. R. Khan, S. M. Bilal, and M. Othman, “A performance comparison of open source network simulators for wireless networks,” in IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp.34-38, Nov. 2012.
    [40] K. Pawlikowski, and V. Yau, “AKAROA: a package for automatic generation and process control of parallel stochastic simulation,” Australian Computer Science Communications, vol. 15, no. 1, pp.71-82, 1993.
    [41] Wiki, “Project DIANE,” [Online] Available: http://en.wikipedia.org/wiki/Project_DIANE
    [42] SSFNet, [Online] Available: http://www.ssfnet.org/homePage.html
    [43] Wiki, “GloMoSim,” [Online] Available: http://en.wikipedia.org/wiki/GloMoSim
    [44] GTNetS, [Online] Available: http://www2.ece.gatech.edu/research/labs/MANIACS/GTNetS/
    [45] J-Sim, [Online] Available: https://sites.google.com/site/jsimofficial/
    [46] D. Gorgen, H. Frey, and C. Hiedels, “JANE - The Java Ad Hoc Network Development Environment,” 40th Annual Simulation Symposium (ANSS), pp.163-176, 2007.
    [47] JiST, [Online] Available: http://jist.ece.cornell.edu/
    [48] S.-M. Huang, Y.-C. Sung, S.-Y. Wang, and Y.-B. Lin, “Nctuns simulation tool for wimax,” WICON '07 Proceedings of the 3rd international conference on Wireless internet, pp.1-6, 2007.
    [49] BOSON NetSim, [Online] Available: http://www.tetcos.com/netsim_gen.html
    [50] NS-2, [Online] Available: http://www.isi.edu/nsnam/ns/
    [51] NS-3 [Online] Available: http://www.nsnam.org/
    [52] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,” Simutools '08 Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems & workshops, 2008.
    [53] N. Bagoria, A. Garhwal, and A. Sharma, “Simulation of Physical layer of WiMAX Network using OPNET Modeller,” International Journal of P2P Network Trends and Technology (IJPTT), vol. 3, Issue 4, May 2013.
    [54] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori , “P2PRealm - Peer-to-Peer Network Simulator,” IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD), pp.93-99, 2006.
    [55] QualNet, [Online] Available: http://web.scalable-networks.com/content/qualnet
    [56] REAL, [Online] Available: http://www.cs.cornell.edu/skeshav/real/overview.html
    [57] Shunra, Shunra Virtual Enterprise (VE), [Online] Available: https://en.wikipedia.org/wiki/Shunra
    [58] ShoX, [Online] Available: http://shox.sourceforge.net/
    [59] SimPy, [Online] Available: http://simpy.readthedocs.org/en/latest/
    [60] TOTEM, [Online] Available: http://totem.info.ucl.ac.be/
    [61] M. Greis, “NS Tutorial,” [Online] Available: http://www.isi.edu/nsnam/ns/tutorial/
    [62] Numbat (New Ubiquitous Mobility Basic Analysis Tools), “WiMAX + Mobile IPv6 handovers in Omnet++ simulation environment,” [Online] Available: http://klub.com.pl/numbat/
    [63] F. C.-D. Tsai, J. Chen, C.-W. Chang, W.-J. lien, C.-H. Hung, and J.-H. Sum, “The Design and Implementation of WiMAX Module for NS-2 Simulator,” in Proc. of the Workshop on Ns-2: the IP Network Simulator, pp.1-8, 2006.
    [64] NDSL (Networks & Distributed Systems Lab), [Online] Available: http://ndsl.csie.cgu.edu.tw/
    [65] N. I. of Standards and Technology, “The Network Simulator NS-2 NIST add-on – IEEE 802.16 model (PHY+MAC),” Technical Report, Jan. 2009.
    [66] NIST (National Institute of Standards and technology), [Online] Available: http://www.nist.gov/itl/antd/emntg/ssm_tools.cfm
    [67] LRC (Computer Networks Laboratory), [Online] Available: http://www.lrc.ic.unicamp.br/wimax_ns2/
    [68] Y.-C. Lai, and Y.-H. Chen, “Designing and Implementing an IEEE 802.16 Network Simulator for Performance Evaluation of Bandwidth Allocation Algorithms,” 2009 11th IEEE International Conference on High Performance Computing and Communications (HPCC '09), pp.432-437, 2009.
    [69] Light WiMAX Simulator (LWX), [Online] Available: http://code.google.com/p/lwx/
    [70] J. Freitag, and N.L.S. da Fonseca, “WiMAX Module for the ns-2 Simulator,” IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.1-6, 2007.
    [71] N. Shrivastav, “A Network Simulator Model of DOCSIS Protocol and a Solution to the Bandwidth-hog problem in the Cable Networks,” Master Dissertation, North Carolina State University, EUA, 2003.
    [72] X. Guo, R. Rouil, C. Soin, S. Parekh, B. Sikdar, and S. Kalyanaraman, “WiMAX System Design and Evaluation Methodology using the NS-2 Simulator,” in Communication Systems and Networks and Workshops (COMSNETS), pp.1-10, 2009.
    [73] J. Farooq, and T. Turletti, “An IEEE 802.16 WiMAX Module for the NS-3 Simulator,” in Proc. of the 2nd International Conference on Simulation tools and Techniques, pp.1-11, 2009.
    [74] M. A. Ismail, G. Piro, L. A. Grieco, and T. Turletti, “An Improved IEEE 802.16 WiMAX Module for the NS-3 Simulator,” in Proc. SIMUTools, pp.63:1-63:10, Mar. 2010.
    [75] A. SayenKo, O. Alanen, H. Martikainen, V. Tykhomyrov, O. Puch ko, and T.Hamalainen, “WINSE: WiMAX NS-2 extension,” In Simutools ’09: Proceeding of 2nd International Conference on Simulation Tools and Techniques, pp.1-10, ICST, Brussels, Belgium, 2009.
    [76] W. P. Furlong, and R. Guha, “OFDMA Extension of NS-3 WiMAX Module,” In UKSim Fourth European Modeling Symposium on Computer Modeling and Simulation, pp.426-431, 2010.
    [77] N. Abbas, H. Hajj, andX A. Borghol, “A Comprehensive WiMAX Simulator,” IEEE Consumer Communications and Networking Conference (CCNC), pp.4-6, 2011.
    [78] G. Pedreno, J. J. Alcaraz, and F. Cerdan, “Using Design Patterns in a HSDPA System Simulator,” 3rd International Symposium on Wireless Communication Systems (ISWCS), pp.679-683, Sept. 2006.
    [79] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software”, 1995.
    [80] T.-M. Wang, 2013 “Enhance the Autonomous Component Carrier Selection for HeNB in LTE-A,” Master thesis, NTUST, TPE.
    [81] Z.-X. Li, 2014, “Component Carrier Selection Using Backup Mechanism for HeNB in LTE-A,” Master thesis, NTUST, TPE.
    [82] C.-W. Liao, 2015, “Component Carrier Selection based on User Interfered level and Distance for HeNB in LTE-A,” Master thesis, NTUST, TPE.

    QR CODE