簡易檢索 / 詳目顯示

研究生: 莊宇航
Yu-Hang Zhuang
論文名稱: 內藏式永磁同步電動機驅動系統最陡上升的最大效率追蹤法
A Steepest Ascent Maximum Efficiency Tracking Method for IPMSM Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
林長華
Chang-Hua Lin
劉添華
Tian-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 114
中文關鍵詞: 最大效率控制預測型控制內藏式永磁同步電動機數位訊號處理器
外文關鍵詞: maximum efficiency control, predictive control, interior permanent synchronous motor, digital signal processor
相關次數: 點閱:258下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討最大效率追蹤法應用在內藏式永磁同步電動機驅動系統,如:冷氣機、泵浦、抽風機等。由於環保意識興起,人們逐漸重視節能,為了減少能源的浪費,文中探討最陡上升法應用在電動機驅動系統中,以期能達成最大效率控制。
    此外,為了改善驅動系統的動態響應,本文亦探討預測型速度控制器。為了避免輸入電流飽和,將限制條件加入預測型控制器,以改善控制器的性能,使電動機具有快速的暫態響應及較佳的加載能力。
    使用最陡上升法使最大效率追蹤步數從14步降低至4步,預測型控制器的超越量從傳統比例-積分控制器的最大超越量2%降低至0%。
    文中,使用德州儀器公司所生產的數位訊號處理器TMS320F28379D,作為驅動及控制的核心,以進行最大效率追蹤法與預測型速度控制法。實驗結果與理論分析相當吻合,說明本文所提方法的正確性及可行性。


    This thesis proposes a maximum efficiency tracking method for interior permanent-magnet synchronous motor drive systems, such as: air conditioners, pumps, and fans. Due to the environmental protection issues and the reduction of the waste energy, this thesis investigates the steepest ascent method to achieve maximum efficiency control for IPMSM drive systems.
    In addition, to improve the dynamic responses of the drive system, this thesis studies the predictive speed controller design. The current controller with constraint is also investigate.
    The steepest ascent method is used to reduce the maximum efficiency tracking steps from 14 steps to 4 steps, and the overshot of the predictive controller is reduced from 2% to 0% compared with the traditional PI controller.
    A digital signal processor(DSP), type TMS320F28379D, made by Texas Instruments, is used as the control center of the drive system. The DSP executes the maximum efficiency tracking algorithm and predictive speed control algorithm. Several experimental results are shown in this thesis. The experimental results can validate the theoretical analysis and indicates the correctness and feasibility of the steepest ascent method proposed.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 符號索引 X 第一章 緒論 1 1.1背景 1 1.2文獻回顧 3 1.3研究目的 5 1.4論文大綱 6 第二章 內藏式永磁同步電動機 7 2.1簡介 7 2.2結構及特性 7 2.3數學模型 11 第三章 內藏式永磁同步電動機驅動系統 19 3.1簡介 19 3.2變頻器脈波寬度調變 20 3.2.1變頻器 20 3.2.2脈波寬度調變 21 3.3閉迴路驅動系統 26 第四章 最陡上升最大效率追蹤法 28 4.1簡介 28 4.2最陡上升法 28 4.2.1非線性規劃介紹 31 4.2.2最陡上升法介紹 31 4.3最陡上升法最大效率追蹤 35 4.4最大效率驅控系統 36 第五章 預測型控制器 39 5.1簡介 39 5.2預測型速度控制器 40 5.2.1基本原理 40 5.2.2限制條件 45 第六章 系統研製 52 6.1簡介 52 6.2硬體電路 54 6.2.1電流偵測電路 54 6.2.2 電源供應電路 56 6.2.3 變頻器與驅動電路 58 6.2.4 數位訊號處理器 62 6.3軟體程式 64 6.3.1 主程式 65 6.3.2 中斷副程式 67 第七章 實測結果 69 7.1 簡介 69 7.2 實測結果 71 第八章 結論及未來研究方向 89 參考文獻 90

    [1] Jiabin Wang, Senior Member, IEEE, David Howe, and Zhengyu Lin, “Design optimization of short-stroke single-phase tubular permanent-magnet motor for refrigeration applications,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 327-334, Jan 2010.
    [2] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, June 2009.
    [3] G. C. R. Sincero, J. Cros, and P. Viarouge, “Arc models for simulation of brush motor commutations,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1518-1521, May 2008.
    [4] Andrea Cavagnino, Senior Member, IEEE, Seyedamin Saied, and Silvio Vaschetto, “Experimental indentification and reduction of acoustic noise in small brushed DC motors,” IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 317-326, Jan/Feb 2014.
    [5] R. D. Hall and W. J. Konstanty, “Commutation of DC motors,” IEEE Industry Applications Magazine, vol. 16, no. 6, pp. 56-62, Nov./Dec. 2010.
    [6] S. O. Kwon, J. J. Lee, B. H. Lee, J. H. Kim, K. H. Ha, and J. P. Hong, “Loss distribution of three-phase induction motor and BLDC motor according to core materials and operating,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4740-4743, September 2009.
    [7] M. N. Ibrahim, P. Sergeant, and E. E. M. Rashad, “Combined star-delta windings to improve synchronous reluctance motor performance,” IEEE Transactions on Energy Conversion, vol. 31, no. 4, pp. 1479-1487, Dec. 2016.
    [8] M. Zafarani, T. Goktas, B. Akin, and S. E. Fedigan, “Modeling and dynamic behavior analysis of magnet defect signatures in permanent magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 3753-3762, May 2016.
    [9] C. Jeong, Y. Kim, and J. Hur, “Optimized design of PMSM with hybrid type permanent magnet for improving performance and reliability,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4692-4701, September 2019.
    [10] K. Kurihara and M. A. Rahman, “High-efficiency line-start interior permanent-magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 40, no. 3, pp. 789-796, May/June 2004.
    [11] S. Fang, H. Liu, H. Wang, H. Yang, and H. Lin, “High power density PMSM with lightweight structure and high-performance soft magnetic alloy core,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1-5, January 2019.
    [12] M. S. Zaky and M. K. Metwaly, “A performance investigation of a four-switch three-phase inverter-fed IM drives at low speeds using fuzzy logic and PI Controllers,” IEEE Transactions on Power Electronics, vol. 32,no. 5, pp. 3741-3753, May 2017.
    [13] D. F. Chen, T. H. Liu, and S. H. Chen, “Implementation of a novel sensorless matrix converter PMSM drive,” IEEE ICPTES-2001, pp.718-724 , vol. 2, Oct. 2001.
    [14] T. D. Do, H. H. Choi, and J. W. Jung, “SDRE-based near optimal control system design for PM synchronous motor,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4063-4074, Nov. 2012.
    [15] S. Kim, J. Lee, and K. Lee, “Self-tuning adaptive speed controller for permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1493-1506, Feb. 2017.
    [16] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 1358-1365, Mar. 2013.
    [17] S. Chi, Z. Zhang, and L. Xu, “Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 582-590, Mar./Apr. 2009.
    [18] M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
    [19] S. Bolognani, S. Bolognani, L. Perett, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1925-1936, June 2009.
    [20] M. S. Mubarok and T. H. Liu, “Implementation of predictive controllers for matrix-converter-based interior permanent magnet synchronous motor position control systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.7, no. 1, pp. 261-273, Mar. 2019.
    [21] C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, “Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-680, Feb. 2014.
    [22] A. Balamurali, G. Feng, A. Kundu, H. Dhulipati, N. C. Kar, “Noninvasive and improved torque and efficiency calculation toward current advance angle determination for maximun efficiency control of PMSM,” IEEE Transactions on Transportation Electrification, vol. 6, no. 1, pp. 28-40, March 2020.
    [23] R. Ni, D. Xu, G. Wang, Li. Ding, G. Zhang, L. Qu, “Maximun efficiency per ampere control of permanent-magnet synchronous machines,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2135-2143, April 2015.
    [24] H. C. Jung, G. J. Park, D. J. Kim, S. Y. Jung, “Optimal design and validation of IPMSM for maximum efficiency distribution compatible to energy consumption areas of HD-EV,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 8201904, June 2017.
    [25] J. D. M. D. Kooning, J. V. D. Vyver, B. Meersman, L. Vandevelde, “Maximum efficiency current waveforms for a PMSM including losses and armature reaction,” IEEE Transactions on Industrial Applications, vol. 53, no. 4, pp. 3336-3344, July/August 2017.
    [26] S. Hwang, H. Lee, T. Kim, Y. Jung, and J. Hong, “The influence of electromagnetic force upon the noise of an IPM motor used in a compressor,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3494-3496, September 2006.
    [27] S. M. Sue and C. T. Pan, “Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 340 -347, Jan. 2008.
    [28] G. D. Donato, G. Scelba, M. Pulvirenti, G. Scarcella, F. G. Capponi, “Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems,” IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 550-564, January 2019.
    [29] A. M. Trzynadlowski, N. Patriciu, F. Blaabjerg, and J. K. Pedersen, “A hybrid current-source/voltage-source power inverter circuit,” IEEE Transactions on Power Electronics, vol. 16, no. 6, pp. 866-871, Nov. 2001.
    [30] S. A. S. Grogan, D. G. Holmes, and B. P. McGrath, “High-performance voltage regulation of current source inverters,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2439-2448, Sep. 2011.
    [31] S. Kouro, P. Cortés, R. Vargas, U. Ammann, and J. Rodríguez, “Model predictive control—a simple and powerful method to control power converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, June 2009.
    [32] H. Zhao, Yan Li, T. Q. Zheng, X. Huang, and Z. Zi, “A sine-like hysteresis current control method in application of three-phase voltage source converter,” IEEE ECCE-2017, pp. 603-609, Oct. 2017.
    [33] H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control, CRC Press, New York, 2004.
    [34] A. Sumper, A. Baggini, Electrical Energy Efficiency: Technologies and Applications, Wiley, April 2012.
    [35] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear Programming Theory and Algorithms, 3rd, Kindle Edition, June 2013.
    [36] D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Fourth Edition, Springer, July 2015.
    [37] R. H. Cuzmar, J. Pereda, R. P. Aguilera, “Phase-shifted model predictive control to achieve power balance of CHB converters for large-scale photovoltaic integration,” IEEE Transactions on Industrial Electronics, vol. 68, no. 10, pp. 9619-9629, October 2021.
    [38] L. P. Wang, Model Predictive Control System Design and Implementation Using MATLAB, Springer, London, 2009.
    [39] P. Cortés, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo, and J Rodríguez, “Predictive control in power electronics and drives,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312-4324, Dec. 2008.
    [40] B. Baker, “How delta-sigma ADC work, Part 1,” Texas Instruments Incorporated - Analog Applications Journal, pp. 13-16, 2011.
    [41] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, John Wiley & Sons, New York, 1996.
    [42] Mitsubishi Electric, PS21765 Dual-In-Line Package Intelligent Power Module, Aug. 2007.
    [43] Texas Instruments, TMS320F2837xD Dual-Core Delfino Microcontrollers Technical Reference Manual, 2015.

    QR CODE